(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
[[Category:ECE301Summer08asan]]
 
[[Category: ECE]]
 
[[Category: ECE]]
 
[[Category: ECE 301]]
 
[[Category: ECE 301]]
Line 5: Line 6:
 
[[Category: asan]]
 
[[Category: asan]]
 
[[Category: Homework]]
 
[[Category: Homework]]
 +
=Problem 2.28, [[Homework_3_-_Summer_08_%28ECE301Summer2008asan%29|HW3]], [[ECE301]], Summer 2008=
 
Determine if each system is causal and stable.
 
Determine if each system is causal and stable.
  
Line 36: Line 38:
  
 
This system is stable but not causal.
 
This system is stable but not causal.
 +
----
 +
[[Homework_3_-_Summer_08_%28ECE301Summer2008asan%29|Back to HW3]]

Latest revision as of 10:21, 30 January 2011

Problem 2.28, HW3, ECE301, Summer 2008

Determine if each system is causal and stable.

A

h[n] = (1/5)$ ^n $ u[n]

For n < 0 h[n] = 0 therefore h[n] is causal.

$ \Sigma_{n=0}^\infty $ (1/5)$ ^n $ < $ \infty $ since lim$ _{n->\infty} $ = 0

The system is both causal and stable.

B

h[n] = $ (0.8)^n $ u[n+2]

Since u[n+2] = 1 for n >= -2 and 0 for n < -2 the system is not causal because h[n] $ \neq $ 0 for t < 0.

$ \Sigma_{n = -2}^\infty $ $ (0.8)^n $ < $ \infty $ since $ lim_{n->\infty} (0.8)^n = 0 $, the system is stable.

The system is not causal and stable.

D

h[n] = 5$ ^n $u[3-n]

Since u[3-n] = 1 for n <= 3 and 0 for n > 3, h[n] $ \neq $ 0 for t < 0.

$ \Sigma_{-\infty}^\infty 5^n u[3-n] = \Sigma_{-\infty}^3 5^n < \infty $, therefore the system is stable.

This system is stable but not causal.


Back to HW3

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett