(New page: *I am not sure about this one. I think this is not isomorphic because the vertex with degree 4 is adjacent to another vertex with degree 4 while the other one is connected through a vertex...)
 
Line 1: Line 1:
 
*I am not sure about this one. I think this is not isomorphic because the vertex with degree 4 is adjacent to another vertex with degree 4 while the other one is connected through a vertex with degree 3. Is this correct?<br>
 
*I am not sure about this one. I think this is not isomorphic because the vertex with degree 4 is adjacent to another vertex with degree 4 while the other one is connected through a vertex with degree 3. Is this correct?<br>
 
-Wooi-Chen Ng
 
-Wooi-Chen Ng
 +
 +
----
 +
Yep, that's right. Alternatively, you could consider subgraphs of the given graphs that consist of vertices of degree 4 and the edges connecting them. If the graphs are isomorphic, these subgraphs must be isomorphic too. However, these subgraphs are not isomorphic (draw them and check), hence, the graphs are not isomorphic too.<br>
 +
--[[User:Asuleime|Asuleime]] 23:20, 10 November 2008 (UTC)

Revision as of 18:20, 10 November 2008

  • I am not sure about this one. I think this is not isomorphic because the vertex with degree 4 is adjacent to another vertex with degree 4 while the other one is connected through a vertex with degree 3. Is this correct?

-Wooi-Chen Ng


Yep, that's right. Alternatively, you could consider subgraphs of the given graphs that consist of vertices of degree 4 and the edges connecting them. If the graphs are isomorphic, these subgraphs must be isomorphic too. However, these subgraphs are not isomorphic (draw them and check), hence, the graphs are not isomorphic too.
--Asuleime 23:20, 10 November 2008 (UTC)

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang