(New page: <br>== Properties of Z transform == == 1. Linearity == <span class="texhtml">''Z''(''a''''x'''''<b>[''n''] + ''b'''''y''[''n'']) = ''a''''X'''''<b>(</b>'''''z'') ...)
 
Line 1: Line 1:
<br>== Properties of Z transform ==
+
<br>== Properties of Z transform ==  
  
== 1. Linearity ==
+
== 1. Linearity ==
  
&lt;span class="texhtml"&gt;''Z''(''a''''x'''''&lt;b&gt;[''n''] + ''b'''''y''[''n'']) = ''a''''X'''''&lt;b&gt;(&lt;/b&gt;'''''z'') + ''b''''''''Y''(''z'')&lt;/span&gt;  
+
&lt;span class="texhtml"&gt;''Z''(''a''''x'''''&lt;b&gt;[''n''] + ''b'''''y''[''n'']) = ''a''''X'''''&lt;b&gt;(&lt;/b&gt;'''''z'') + ''b''''''''Y''(''z'')&lt;/span&gt;'''
  
== 2. Time Delay ==
+
== 2. Time Delay ==
  
 
&lt;math&gt;Z(x[n-k])=z^{-k}[X(z)+\sum_{n=1}^{k}x[-n]z^{n}]&lt;/math&gt;  
 
&lt;math&gt;Z(x[n-k])=z^{-k}[X(z)+\sum_{n=1}^{k}x[-n]z^{n}]&lt;/math&gt;  
  
== 3. Time Advance ==
+
== 3. Time Advance ==
  
 
&lt;math&gt;Z(x[n+k])=z^{k}[X(z)-\sum_{n=0}^{k-1}x[n]z^{-n}]&lt;/math&gt;  
 
&lt;math&gt;Z(x[n+k])=z^{k}[X(z)-\sum_{n=0}^{k-1}x[n]z^{-n}]&lt;/math&gt;  
  
== 4. Time Convolution Theorem ==
+
== 4. Time Convolution Theorem ==
  
 
&lt;span class="texhtml"&gt;''Z''(''x''[''n''] * ''y''[''n'']) = ''X''(''z'')''Y''(''z'')&lt;/span&gt;
 
&lt;span class="texhtml"&gt;''Z''(''x''[''n''] * ''y''[''n'']) = ''X''(''z'')''Y''(''z'')&lt;/span&gt;

Revision as of 17:49, 16 December 2010


== Properties of Z transform ==

1. Linearity

<span class="texhtml">Z(a'x<b>[n] + by[n]) = a'X<b>(</b>z) + b'''Y(z)</span>

2. Time Delay

<math>Z(x[n-k])=z^{-k}[X(z)+\sum_{n=1}^{k}x[-n]z^{n}]</math>

3. Time Advance

<math>Z(x[n+k])=z^{k}[X(z)-\sum_{n=0}^{k-1}x[n]z^{-n}]</math>

4. Time Convolution Theorem

<span class="texhtml">Z(x[n] * y[n]) = X(z)Y(z)</span>

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett