Line 7: Line 7:
 
'''(a)'''
 
'''(a)'''
  
Assume that <math>\mathcal{S}</math>  is the sample space of a random experiment and that <math>\mathcal{F}_{1}</math>  and <math>\mathcal{F}_{2}</math>  are <math>\sigma</math> -fields (valid event spaces) on <math>\mathcal{S}</math> . Prove that <math>\mathcal{F}_{1}\cap\mathcal{F}_{2}</math>  is also a <math>\sigma</math> -field on <math>S</math> .
+
Assume that <math class="inline">\mathcal{S}</math>  is the sample space of a random experiment and that <math class="inline">\mathcal{F}_{1}</math>  and <math class="inline">\mathcal{F}_{2}</math>  are <math class="inline">\sigma</math> -fields (valid event spaces) on <math class="inline">\mathcal{S}</math> . Prove that <math class="inline">\mathcal{F}_{1}\cap\mathcal{F}_{2}</math>  is also a <math class="inline">\sigma</math> -field on <math class="inline">S</math> .
  
 
'''(b)'''
 
'''(b)'''
  
Consider a sample space <math>\mathcal{S}</math>  and corresponding event space <math>\mathcal{F}</math> . Suppose that <math>P_{1}</math>  and <math>P_{2}</math>  are both balid probability measures defined on <math>\mathcal{F}</math> . Prove that <math>P</math>  defined by <math>P\left(A\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right),\qquad\forall A\in\mathcal{F}</math>  is also a valid probability measure on <math>\mathcal{F}</math>  if <math>\alpha_{1},\;\alpha_{2}\geq0</math>  and <math>\alpha_{1}+\alpha_{2}=1</math> .
+
Consider a sample space <math class="inline">\mathcal{S}</math>  and corresponding event space <math class="inline">\mathcal{F}</math> . Suppose that <math class="inline">P_{1}</math>  and <math class="inline">P_{2}</math>  are both balid probability measures defined on <math class="inline">\mathcal{F}</math> . Prove that <math class="inline">P</math>  defined by <math class="inline">P\left(A\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right),\qquad\forall A\in\mathcal{F}</math>  is also a valid probability measure on <math class="inline">\mathcal{F}</math>  if <math class="inline">\alpha_{1},\;\alpha_{2}\geq0</math>  and <math class="inline">\alpha_{1}+\alpha_{2}=1</math> .
  
 
'''Answer'''
 
'''Answer'''
  
• Because <math>P_{1}</math>  and <math>P_{2}</math>  are valid probability measures, we know that they satisfy the axioms of probability:
+
• Because <math class="inline">P_{1}</math>  and <math class="inline">P_{2}</math>  are valid probability measures, we know that they satisfy the axioms of probability:
  
1. <math>P_{1}\left(A\right)\geq0</math>  and <math>P_{2}\left(A\right)\geq0</math> , <math>\forall A\in\mathcal{F}\left(\mathcal{S}\right)</math> .
+
1. <math class="inline">P_{1}\left(A\right)\geq0</math>  and <math class="inline">P_{2}\left(A\right)\geq0</math> , <math class="inline">\forall A\in\mathcal{F}\left(\mathcal{S}\right)</math> .
  
2. <math>P_{1}\left(\mathcal{S}\right)=1</math>  and <math>P_{2}\left(\mathcal{S}\right)=1</math> .
+
2. <math class="inline">P_{1}\left(\mathcal{S}\right)=1</math>  and <math class="inline">P_{2}\left(\mathcal{S}\right)=1</math> .
  
3. If <math>A_{1}</math>  and <math>A_{2}\in\mathcal{F}\left(\mathcal{S}\right)</math>  are disjoint events, then <math>P_{1}\left(A_{1}\cup A_{2}\right)=P_{1}\left(A_{1}\right)+P_{1}\left(A_{2}\right)</math>  and <math>P_{2}\left(A_{1}\cup A_{2}\right)=P_{2}\left(A_{1}\right)+P_{2}\left(A_{2}\right)</math> .
+
3. If <math class="inline">A_{1}</math>  and <math class="inline">A_{2}\in\mathcal{F}\left(\mathcal{S}\right)</math>  are disjoint events, then <math class="inline">P_{1}\left(A_{1}\cup A_{2}\right)=P_{1}\left(A_{1}\right)+P_{1}\left(A_{2}\right)</math>  and <math class="inline">P_{2}\left(A_{1}\cup A_{2}\right)=P_{2}\left(A_{1}\right)+P_{2}\left(A_{2}\right)</math> .
  
4. If <math>A_{1},A_{2},\cdots,A_{n},\cdots\in\mathcal{F}\left(\mathcal{S}\right)</math>  is countable collection of disjoint events, then <math>P_{1}\left(\cup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P_{1}\left(A_{i}\right)</math>  and <math>P_{2}\left(\cup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P_{2}\left(A_{i}\right)</math> .
+
4. If <math class="inline">A_{1},A_{2},\cdots,A_{n},\cdots\in\mathcal{F}\left(\mathcal{S}\right)</math>  is countable collection of disjoint events, then <math class="inline">P_{1}\left(\cup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P_{1}\left(A_{i}\right)</math>  and <math class="inline">P_{2}\left(\cup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P_{2}\left(A_{i}\right)</math> .
  
 
• Now, we check each condition to become a valid probability measure:
 
• Now, we check each condition to become a valid probability measure:
  
1. <math>P\left(A\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right)\geq0 , \forall A\in\mathcal{F}\left(\mathcal{S}\right)</math> .
+
1. <math class="inline">P\left(A\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right)\geq0 , \forall A\in\mathcal{F}\left(\mathcal{S}\right)</math> .
  
– <math>\because\alpha_{1}\geq0,\;\alpha_{2}\geq0,\; P_{1}\left(A\right)\geq0,\text{ and }P_{2}\left(A\right)\geq0</math> .
+
– <math class="inline">\because\alpha_{1}\geq0,\;\alpha_{2}\geq0,\; P_{1}\left(A\right)\geq0,\text{ and }P_{2}\left(A\right)\geq0</math> .
  
2. <math>P\left(S\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right)=\alpha_{1}+\alpha_{2}=1</math> .
+
2. <math class="inline">P\left(S\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right)=\alpha_{1}+\alpha_{2}=1</math> .
  
3. If <math>A_{1}</math>  and <math>A_{2}\in\mathcal{F}\left(\mathcal{S}\right)</math>  are disjoint events, then <math>P\left(A_{1}\cup A_{2}\right)=\alpha_{1}P_{1}\left(A_{1}\cup A_{2}\right)+\alpha_{2}P_{2}\left(A_{1}\cup A_{2}\right)=\alpha_{1}\left\{ P_{1}\left(A_{1}\right)+P_{1}\left(A_{2}\right)\right\} +\alpha_{2}\left\{ P_{2}\left(A_{1}\right)+P_{2}\left(A_{2}\right)\right\}</math><math> =\alpha_{1}P_{1}\left(A_{1}\right)+\alpha_{2}P_{2}\left(A_{1}\right)+\alpha_{1}P_{1}\left(A_{2}\right)+\alpha_{2}P_{2}\left(A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right).</math>  
+
3. If <math class="inline">A_{1}</math>  and <math class="inline">A_{2}\in\mathcal{F}\left(\mathcal{S}\right)</math>  are disjoint events, then <math class="inline">P\left(A_{1}\cup A_{2}\right)=\alpha_{1}P_{1}\left(A_{1}\cup A_{2}\right)+\alpha_{2}P_{2}\left(A_{1}\cup A_{2}\right)=\alpha_{1}\left\{ P_{1}\left(A_{1}\right)+P_{1}\left(A_{2}\right)\right\} +\alpha_{2}\left\{ P_{2}\left(A_{1}\right)+P_{2}\left(A_{2}\right)\right\}</math><math class="inline"> =\alpha_{1}P_{1}\left(A_{1}\right)+\alpha_{2}P_{2}\left(A_{1}\right)+\alpha_{1}P_{1}\left(A_{2}\right)+\alpha_{2}P_{2}\left(A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right).</math>  
  
4. If <math>A_{1},A_{2},\cdots,A_{n},\cdots\in\mathcal{F}\left(\mathcal{S}\right)</math>  is countable collection of disjoint events, then <math>P\left(\cup_{i=0}^{\infty}A_{i}\right)=\alpha_{1}P_{1}\left(\cup_{i=0}^{\infty}A_{i}\right)+\alpha_{2}P_{2}\left(\cup_{i=0}^{\infty}A_{i}\right)=\alpha_{1}\sum_{i=1}^{\infty}P_{1}\left(A_{i}\right)+\alpha_{2}\sum_{i=1}^{\infty}P_{2}\left(A_{i}\right)</math><math>=\sum_{i=1}^{\infty}\left\{ \alpha_{1}P_{1}\left(A_{i}\right)+\alpha_{2}P_{2}\left(A_{i}\right)\right\} =\sum_{i=1}^{\infty}P\left(A_{i}\right).</math>  
+
4. If <math class="inline">A_{1},A_{2},\cdots,A_{n},\cdots\in\mathcal{F}\left(\mathcal{S}\right)</math>  is countable collection of disjoint events, then <math class="inline">P\left(\cup_{i=0}^{\infty}A_{i}\right)=\alpha_{1}P_{1}\left(\cup_{i=0}^{\infty}A_{i}\right)+\alpha_{2}P_{2}\left(\cup_{i=0}^{\infty}A_{i}\right)=\alpha_{1}\sum_{i=1}^{\infty}P_{1}\left(A_{i}\right)+\alpha_{2}\sum_{i=1}^{\infty}P_{2}\left(A_{i}\right)</math><math class="inline">=\sum_{i=1}^{\infty}\left\{ \alpha_{1}P_{1}\left(A_{i}\right)+\alpha_{2}P_{2}\left(A_{i}\right)\right\} =\sum_{i=1}^{\infty}P\left(A_{i}\right).</math>  
  
 
'''2. (10 pts.)'''
 
'''2. (10 pts.)'''
  
Identical twins come from the same egg and and hence are of the same sex. Fraternal twins have a probability <math>1/2</math>  of being of the same sex. Among twins, the probability of a fraternal set is p  and of an identical set is <math>q=1-p</math> . Given that a set of twins selected at random are of the same sex, what is the probability they are fraternal? (Simplify your answer as much as possible.) Sketch a plot of the conditional probability that the twins are fraternal given that they are of the same sex as a function of <math>q</math>  (the probability that a set of twins are identical.)
+
Identical twins come from the same egg and and hence are of the same sex. Fraternal twins have a probability <math class="inline">1/2</math>  of being of the same sex. Among twins, the probability of a fraternal set is p  and of an identical set is <math class="inline">q=1-p</math> . Given that a set of twins selected at random are of the same sex, what is the probability they are fraternal? (Simplify your answer as much as possible.) Sketch a plot of the conditional probability that the twins are fraternal given that they are of the same sex as a function of <math class="inline">q</math>  (the probability that a set of twins are identical.)
  
 
'''Note'''
 
'''Note'''
Line 47: Line 47:
 
'''3. (30 pts.)'''
 
'''3. (30 pts.)'''
  
Let <math>\mathbf{X}\left(t\right)</math>  be a real continuous-time Gaussian random process. Show that its probabilistic behavior is completely characterized by its mean <math>\mu_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]</math> and its autocorrelation function <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right].</math>  
+
Let <math class="inline">\mathbf{X}\left(t\right)</math>  be a real continuous-time Gaussian random process. Show that its probabilistic behavior is completely characterized by its mean <math class="inline">\mu_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]</math> and its autocorrelation function <math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right].</math>  
  
 
'''4. (30 pts.)'''
 
'''4. (30 pts.)'''
  
Assume that <math>\mathbf{X}\left(t\right)</math>  is a zero-mean, continuous-time, Gaussian white noise process with autocorrelation function <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\delta\left(t_{1}-t_{2}\right)</math>.  Let <math>\mathbf{Y}\left(t\right)</math>  be a new random process defined by <math>\mathbf{Y}\left(t\right)=\frac{1}{T}\int_{t-T}^{t}\mathbf{X}\left(s\right)ds</math>,  where <math>T>0</math> .
+
Assume that <math class="inline">\mathbf{X}\left(t\right)</math>  is a zero-mean, continuous-time, Gaussian white noise process with autocorrelation function <math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\delta\left(t_{1}-t_{2}\right)</math>.  Let <math class="inline">\mathbf{Y}\left(t\right)</math>  be a new random process defined by <math class="inline">\mathbf{Y}\left(t\right)=\frac{1}{T}\int_{t-T}^{t}\mathbf{X}\left(s\right)ds</math>,  where <math class="inline">T>0</math> .
  
 
'''(a)'''  
 
'''(a)'''  
  
What is the mean of <math>\mathbf{Y}\left(t\right)</math> ?
+
What is the mean of <math class="inline">\mathbf{Y}\left(t\right)</math> ?
  
<math>E\left[\mathbf{Y}\left(t\right)\right]=E\left[\frac{1}{T}\int_{t-T}^{t}\mathbf{X}\left(s\right)ds\right]=\frac{1}{T}\int_{t-T}^{t}E\left[\mathbf{X}\left(s\right)\right]ds=\frac{1}{T}\int_{t-T}^{t}0ds=0.</math>  
+
<math class="inline">E\left[\mathbf{Y}\left(t\right)\right]=E\left[\frac{1}{T}\int_{t-T}^{t}\mathbf{X}\left(s\right)ds\right]=\frac{1}{T}\int_{t-T}^{t}E\left[\mathbf{X}\left(s\right)\right]ds=\frac{1}{T}\int_{t-T}^{t}0ds=0.</math>  
  
 
'''(b)'''  
 
'''(b)'''  
  
What is the autocorrelation function of <math>\mathbf{Y}\left(t\right)</math> ?
+
What is the autocorrelation function of <math class="inline">\mathbf{Y}\left(t\right)</math> ?
  
<math>R_{\mathbf{YY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{Y}\left(t_{1}\right)\mathbf{Y}^{*}\left(t_{2}\right)\right]=E\left[\right]</math>  
+
<math class="inline">R_{\mathbf{YY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{Y}\left(t_{1}\right)\mathbf{Y}^{*}\left(t_{2}\right)\right]=E\left[\right]</math>  
  
 
'''(c)'''  
 
'''(c)'''  
  
Write an expression for the second-order pdf <math>f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right)</math>  of <math>\mathbf{Y}\left(t\right)</math> .
+
Write an expression for the second-order pdf <math class="inline">f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right)</math>  of <math class="inline">\mathbf{Y}\left(t\right)</math> .
  
 
(d)  
 
(d)  
  
Under what conditions on <math>t_{1}</math>  and <math>t_{2}</math>  will <math>\mathbf{Y}\left(t_{1}\right)</math>  and <math>\mathbf{Y}\left(t_{2}\right)</math>  be statistically independent?
+
Under what conditions on <math class="inline">t_{1}</math>  and <math class="inline">t_{2}</math>  will <math class="inline">\mathbf{Y}\left(t_{1}\right)</math>  and <math class="inline">\mathbf{Y}\left(t_{2}\right)</math>  be statistically independent?
  
 
----
 
----

Revision as of 06:30, 1 December 2010

7.8 QE 2004 January

1. (30 pts.)

This question consists of two separate short questions relating to the structure of probability space:

(a)

Assume that $ \mathcal{S} $ is the sample space of a random experiment and that $ \mathcal{F}_{1} $ and $ \mathcal{F}_{2} $ are $ \sigma $ -fields (valid event spaces) on $ \mathcal{S} $ . Prove that $ \mathcal{F}_{1}\cap\mathcal{F}_{2} $ is also a $ \sigma $ -field on $ S $ .

(b)

Consider a sample space $ \mathcal{S} $ and corresponding event space $ \mathcal{F} $ . Suppose that $ P_{1} $ and $ P_{2} $ are both balid probability measures defined on $ \mathcal{F} $ . Prove that $ P $ defined by $ P\left(A\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right),\qquad\forall A\in\mathcal{F} $ is also a valid probability measure on $ \mathcal{F} $ if $ \alpha_{1},\;\alpha_{2}\geq0 $ and $ \alpha_{1}+\alpha_{2}=1 $ .

Answer

• Because $ P_{1} $ and $ P_{2} $ are valid probability measures, we know that they satisfy the axioms of probability:

1. $ P_{1}\left(A\right)\geq0 $ and $ P_{2}\left(A\right)\geq0 $ , $ \forall A\in\mathcal{F}\left(\mathcal{S}\right) $ .

2. $ P_{1}\left(\mathcal{S}\right)=1 $ and $ P_{2}\left(\mathcal{S}\right)=1 $ .

3. If $ A_{1} $ and $ A_{2}\in\mathcal{F}\left(\mathcal{S}\right) $ are disjoint events, then $ P_{1}\left(A_{1}\cup A_{2}\right)=P_{1}\left(A_{1}\right)+P_{1}\left(A_{2}\right) $ and $ P_{2}\left(A_{1}\cup A_{2}\right)=P_{2}\left(A_{1}\right)+P_{2}\left(A_{2}\right) $ .

4. If $ A_{1},A_{2},\cdots,A_{n},\cdots\in\mathcal{F}\left(\mathcal{S}\right) $ is countable collection of disjoint events, then $ P_{1}\left(\cup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P_{1}\left(A_{i}\right) $ and $ P_{2}\left(\cup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P_{2}\left(A_{i}\right) $ .

• Now, we check each condition to become a valid probability measure:

1. $ P\left(A\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right)\geq0 , \forall A\in\mathcal{F}\left(\mathcal{S}\right) $ .

$ \because\alpha_{1}\geq0,\;\alpha_{2}\geq0,\; P_{1}\left(A\right)\geq0,\text{ and }P_{2}\left(A\right)\geq0 $ .

2. $ P\left(S\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right)=\alpha_{1}+\alpha_{2}=1 $ .

3. If $ A_{1} $ and $ A_{2}\in\mathcal{F}\left(\mathcal{S}\right) $ are disjoint events, then $ P\left(A_{1}\cup A_{2}\right)=\alpha_{1}P_{1}\left(A_{1}\cup A_{2}\right)+\alpha_{2}P_{2}\left(A_{1}\cup A_{2}\right)=\alpha_{1}\left\{ P_{1}\left(A_{1}\right)+P_{1}\left(A_{2}\right)\right\} +\alpha_{2}\left\{ P_{2}\left(A_{1}\right)+P_{2}\left(A_{2}\right)\right\} $$ =\alpha_{1}P_{1}\left(A_{1}\right)+\alpha_{2}P_{2}\left(A_{1}\right)+\alpha_{1}P_{1}\left(A_{2}\right)+\alpha_{2}P_{2}\left(A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right). $

4. If $ A_{1},A_{2},\cdots,A_{n},\cdots\in\mathcal{F}\left(\mathcal{S}\right) $ is countable collection of disjoint events, then $ P\left(\cup_{i=0}^{\infty}A_{i}\right)=\alpha_{1}P_{1}\left(\cup_{i=0}^{\infty}A_{i}\right)+\alpha_{2}P_{2}\left(\cup_{i=0}^{\infty}A_{i}\right)=\alpha_{1}\sum_{i=1}^{\infty}P_{1}\left(A_{i}\right)+\alpha_{2}\sum_{i=1}^{\infty}P_{2}\left(A_{i}\right) $$ =\sum_{i=1}^{\infty}\left\{ \alpha_{1}P_{1}\left(A_{i}\right)+\alpha_{2}P_{2}\left(A_{i}\right)\right\} =\sum_{i=1}^{\infty}P\left(A_{i}\right). $

2. (10 pts.)

Identical twins come from the same egg and and hence are of the same sex. Fraternal twins have a probability $ 1/2 $ of being of the same sex. Among twins, the probability of a fraternal set is p and of an identical set is $ q=1-p $ . Given that a set of twins selected at random are of the same sex, what is the probability they are fraternal? (Simplify your answer as much as possible.) Sketch a plot of the conditional probability that the twins are fraternal given that they are of the same sex as a function of $ q $ (the probability that a set of twins are identical.)

Note

This problem is identical to the problem in the MBR 2004 Spring Final.

3. (30 pts.)

Let $ \mathbf{X}\left(t\right) $ be a real continuous-time Gaussian random process. Show that its probabilistic behavior is completely characterized by its mean $ \mu_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right] $ and its autocorrelation function $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right]. $

4. (30 pts.)

Assume that $ \mathbf{X}\left(t\right) $ is a zero-mean, continuous-time, Gaussian white noise process with autocorrelation function $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\delta\left(t_{1}-t_{2}\right) $. Let $ \mathbf{Y}\left(t\right) $ be a new random process defined by $ \mathbf{Y}\left(t\right)=\frac{1}{T}\int_{t-T}^{t}\mathbf{X}\left(s\right)ds $, where $ T>0 $ .

(a)

What is the mean of $ \mathbf{Y}\left(t\right) $ ?

$ E\left[\mathbf{Y}\left(t\right)\right]=E\left[\frac{1}{T}\int_{t-T}^{t}\mathbf{X}\left(s\right)ds\right]=\frac{1}{T}\int_{t-T}^{t}E\left[\mathbf{X}\left(s\right)\right]ds=\frac{1}{T}\int_{t-T}^{t}0ds=0. $

(b)

What is the autocorrelation function of $ \mathbf{Y}\left(t\right) $ ?

$ R_{\mathbf{YY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{Y}\left(t_{1}\right)\mathbf{Y}^{*}\left(t_{2}\right)\right]=E\left[\right] $

(c)

Write an expression for the second-order pdf $ f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right) $ of $ \mathbf{Y}\left(t\right) $ .

(d)

Under what conditions on $ t_{1} $ and $ t_{2} $ will $ \mathbf{Y}\left(t_{1}\right) $ and $ \mathbf{Y}\left(t_{2}\right) $ be statistically independent?


Back to ECE600

Back to ECE 600 QE

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang