Line 2: Line 2:
 
From the [[ECE_600_Prerequisites|ECE600 Pre-requisites notes]] of  [[user:han84|Sangchun Han]], [[ECE]] PhD student.
 
From the [[ECE_600_Prerequisites|ECE600 Pre-requisites notes]] of  [[user:han84|Sangchun Han]], [[ECE]] PhD student.
 
----
 
----
The joint characteristic function of two joint-distributed RVs <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  is  
+
The joint characteristic function of two joint-distributed RVs <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  is  
  
<math>\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)\triangleq E\left[e^{i\left(\omega_{1}\mathbf{X}+\omega_{2}\mathbf{Y}\right)}\right]=\iint_{\mathbf{R}^{2}}e^{i\left(\omega_{1}\mathbf{X}+\omega_{2}\mathbf{Y}\right)}f_{\mathbf{XY}}\left(x,y\right)dxdy=\text{2-dim Fourier transform}.</math>  
+
<math class="inline">\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)\triangleq E\left[e^{i\left(\omega_{1}\mathbf{X}+\omega_{2}\mathbf{Y}\right)}\right]=\iint_{\mathbf{R}^{2}}e^{i\left(\omega_{1}\mathbf{X}+\omega_{2}\mathbf{Y}\right)}f_{\mathbf{XY}}\left(x,y\right)dxdy=\text{2-dim Fourier transform}.</math>  
  
 
Note
 
Note
Line 10: Line 10:
 
Inverse Fourier transform relation:
 
Inverse Fourier transform relation:
  
<math>f_{\mathbf{XY}}\left(x,y\right)=\frac{1}{\left(2\pi\right)^{2}}\iint_{\mathbf{R}^{2}}e^{-i\left(\omega_{1}x+\omega_{2}y\right)}\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)d\omega_{1}d\omega_{2}.</math>  
+
<math class="inline">f_{\mathbf{XY}}\left(x,y\right)=\frac{1}{\left(2\pi\right)^{2}}\iint_{\mathbf{R}^{2}}e^{-i\left(\omega_{1}x+\omega_{2}y\right)}\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)d\omega_{1}d\omega_{2}.</math>  
  
 
Note
 
Note
  
1. <math>\Phi_{\mathbf{X}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(\omega,0\right)</math> and <math>\Phi_{\mathbf{Y}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(0,\omega\right)</math> .
+
1. <math class="inline">\Phi_{\mathbf{X}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(\omega,0\right)</math> and <math class="inline">\Phi_{\mathbf{Y}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(0,\omega\right)</math> .
  
2. If <math>\mathbf{Z}=a\mathbf{X}+b\mathbf{Y}</math> , then <math>\Phi_{\mathbf{Z}}\left(\omega\right)=E\left[e^{i\omega\left(a\mathbf{X}+b\mathbf{Y}\right)}\right]=E\left[e^{i\left(\left(\omega a\right)\mathbf{X}+\left(\omega b\right)\mathbf{Y}\right)}\right]=\Phi_{\mathbf{XY}}\left(\omega a,\omega b\right)</math>.  
+
2. If <math class="inline">\mathbf{Z}=a\mathbf{X}+b\mathbf{Y}</math> , then <math class="inline">\Phi_{\mathbf{Z}}\left(\omega\right)=E\left[e^{i\omega\left(a\mathbf{X}+b\mathbf{Y}\right)}\right]=E\left[e^{i\left(\left(\omega a\right)\mathbf{X}+\left(\omega b\right)\mathbf{Y}\right)}\right]=\Phi_{\mathbf{XY}}\left(\omega a,\omega b\right)</math>.  
  
 
• This is used for sum of two Gaussian RVs.
 
• This is used for sum of two Gaussian RVs.
Line 22: Line 22:
 
Theorem
 
Theorem
  
If two jointly-distributed RVs <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  are statistically independent, then <math>\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=\Phi_{\mathbf{X}}\left(\omega_{1}\right)\mathbf{\Phi}_{\mathbf{Y}}\left(\omega_{2}\right)</math> .
+
If two jointly-distributed RVs <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  are statistically independent, then <math class="inline">\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=\Phi_{\mathbf{X}}\left(\omega_{1}\right)\mathbf{\Phi}_{\mathbf{Y}}\left(\omega_{2}\right)</math> .
  
 
Proof
 
Proof
  
<math>\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=E\left[e^{i\left(\omega_{1}\mathbf{X}+\omega_{2}\mathbf{Y}\right)}\right]=E\left[e^{i\omega_{1}\mathbf{X}}e^{i\omega_{2}\mathbf{Y}}\right]=E\left[e^{i\omega_{1}\mathbf{X}}\right]E\left[e^{i\omega_{2}\mathbf{Y}}\right]=\Phi_{\mathbf{X}}\left(\omega_{1}\right)\mathbf{\Phi}_{\mathbf{Y}}\left(\omega_{2}\right)</math>.  
+
<math class="inline">\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=E\left[e^{i\left(\omega_{1}\mathbf{X}+\omega_{2}\mathbf{Y}\right)}\right]=E\left[e^{i\omega_{1}\mathbf{X}}e^{i\omega_{2}\mathbf{Y}}\right]=E\left[e^{i\omega_{1}\mathbf{X}}\right]E\left[e^{i\omega_{2}\mathbf{Y}}\right]=\Phi_{\mathbf{X}}\left(\omega_{1}\right)\mathbf{\Phi}_{\mathbf{Y}}\left(\omega_{2}\right)</math>.  
  
<math>\because  \mathbf{X}</math>  and <math>\mathbf{Y}</math>  are statistically independent  
+
<math class="inline">\because  \mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  are statistically independent  
  
<math>\Longrightarrow e^{i\omega_{1}\mathbf{X}}</math>  and <math>e^{i\omega_{2}\mathbf{Y}}</math>  are statistically independent
+
<math class="inline">\Longrightarrow e^{i\omega_{1}\mathbf{X}}</math>  and <math class="inline">e^{i\omega_{2}\mathbf{Y}}</math>  are statistically independent
  
<math>\Longrightarrow e^{i\omega_{1}\mathbf{X}}</math>  and <math>e^{i\omega_{2}\mathbf{Y}}</math>  are uncorrelated.
+
<math class="inline">\Longrightarrow e^{i\omega_{1}\mathbf{X}}</math>  and <math class="inline">e^{i\omega_{2}\mathbf{Y}}</math>  are uncorrelated.
  
 
Fact
 
Fact
Line 38: Line 38:
 
The joint characteristic function of two jointly-distributed Gaussian RVs is
 
The joint characteristic function of two jointly-distributed Gaussian RVs is
  
<math>\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=e^{i\left(\eta_{\mathbf{X}}\omega_{1}+\eta_{\mathbf{Y}}\omega_{2}\right)}\cdot e^{-\frac{1}{2}\left[\sigma_{\mathbf{X}}^{2}\omega_{1}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}\omega_{1}\omega_{2}+\sigma_{\mathbf{Y}}^{2}\omega_{2}^{2}\right]}</math>.  
+
<math class="inline">\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=e^{i\left(\eta_{\mathbf{X}}\omega_{1}+\eta_{\mathbf{Y}}\omega_{2}\right)}\cdot e^{-\frac{1}{2}\left[\sigma_{\mathbf{X}}^{2}\omega_{1}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}\omega_{1}\omega_{2}+\sigma_{\mathbf{Y}}^{2}\omega_{2}^{2}\right]}</math>.  
  
If <math>\mathbf{Z}=\mathbf{X}+\mathbf{Y}</math> , then <math>\eta_{\mathbf{Z}}=\eta_{\mathbf{X}}+\eta_{\mathbf{Y}}</math>  and <math>\sigma_{\mathbf{Z}}=\sqrt{\sigma_{\mathbf{X}}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}+\sigma_{\mathbf{Y}}^{2}}</math>  because <math>\Phi_{\mathbf{Z}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(\omega,\omega\right)=e^{i\left(\eta_{\mathbf{X}}+\eta_{\mathbf{Y}}\right)\omega}\cdot e^{-\frac{1}{2}\left[\sigma_{\mathbf{X}}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}+\sigma_{\mathbf{Y}}^{2}\right]\omega^{2}}</math>.  
+
If <math class="inline">\mathbf{Z}=\mathbf{X}+\mathbf{Y}</math> , then <math class="inline">\eta_{\mathbf{Z}}=\eta_{\mathbf{X}}+\eta_{\mathbf{Y}}</math>  and <math class="inline">\sigma_{\mathbf{Z}}=\sqrt{\sigma_{\mathbf{X}}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}+\sigma_{\mathbf{Y}}^{2}}</math>  because <math class="inline">\Phi_{\mathbf{Z}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(\omega,\omega\right)=e^{i\left(\eta_{\mathbf{X}}+\eta_{\mathbf{Y}}\right)\omega}\cdot e^{-\frac{1}{2}\left[\sigma_{\mathbf{X}}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}+\sigma_{\mathbf{Y}}^{2}\right]\omega^{2}}</math>.  
  
 
Joint Moment Generation Function
 
Joint Moment Generation Function
  
The joint moment generating function of two jointly-distributed RVs <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  is
+
The joint moment generating function of two jointly-distributed RVs <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  is
  
<math>\phi_{\mathbf{XY}}\left(s_{1},s_{2}\right)\triangleq E\left[e^{s_{1}\mathbf{X}+s_{2}\mathbf{Y}}\right]=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{s_{1}\mathbf{X}+s_{2}\mathbf{Y}}f_{\mathbf{XY}}\left(x,y\right)dxdy</math>.  
+
<math class="inline">\phi_{\mathbf{XY}}\left(s_{1},s_{2}\right)\triangleq E\left[e^{s_{1}\mathbf{X}+s_{2}\mathbf{Y}}\right]=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{s_{1}\mathbf{X}+s_{2}\mathbf{Y}}f_{\mathbf{XY}}\left(x,y\right)dxdy</math>.  
  
 
Moment Theorem
 
Moment Theorem
  
The joint noncentral moment <math>E\left[\mathbf{X}^{j}\mathbf{Y}^{k}\right]</math>  is given by
+
The joint noncentral moment <math class="inline">E\left[\mathbf{X}^{j}\mathbf{Y}^{k}\right]</math>  is given by
  
<math>E\left[\mathbf{X}^{j}\mathbf{Y}^{k}\right]=\frac{\partial^{j}\partial^{k}}{\partial s_{1}^{j}\partial s_{2}^{k}}\left(\phi_{\mathbf{XY}}\left(s_{1},s_{2}\right)\right)|_{s_{1}=0,s_{2}=0}</math>.
+
<math class="inline">E\left[\mathbf{X}^{j}\mathbf{Y}^{k}\right]=\frac{\partial^{j}\partial^{k}}{\partial s_{1}^{j}\partial s_{2}^{k}}\left(\phi_{\mathbf{XY}}\left(s_{1},s_{2}\right)\right)|_{s_{1}=0,s_{2}=0}</math>.
 
----
 
----
 
[[ECE600|Back to ECE600]]
 
[[ECE600|Back to ECE600]]
  
 
[[ECE 600 Prerequisites|Back to ECE 600 Prerequisites]]
 
[[ECE 600 Prerequisites|Back to ECE 600 Prerequisites]]

Latest revision as of 10:32, 30 November 2010

1.11 Joint Characteristic Function

From the ECE600 Pre-requisites notes of Sangchun Han, ECE PhD student.


The joint characteristic function of two joint-distributed RVs $ \mathbf{X} $ and $ \mathbf{Y} $ is

$ \Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)\triangleq E\left[e^{i\left(\omega_{1}\mathbf{X}+\omega_{2}\mathbf{Y}\right)}\right]=\iint_{\mathbf{R}^{2}}e^{i\left(\omega_{1}\mathbf{X}+\omega_{2}\mathbf{Y}\right)}f_{\mathbf{XY}}\left(x,y\right)dxdy=\text{2-dim Fourier transform}. $

Note

Inverse Fourier transform relation:

$ f_{\mathbf{XY}}\left(x,y\right)=\frac{1}{\left(2\pi\right)^{2}}\iint_{\mathbf{R}^{2}}e^{-i\left(\omega_{1}x+\omega_{2}y\right)}\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)d\omega_{1}d\omega_{2}. $

Note

1. $ \Phi_{\mathbf{X}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(\omega,0\right) $ and $ \Phi_{\mathbf{Y}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(0,\omega\right) $ .

2. If $ \mathbf{Z}=a\mathbf{X}+b\mathbf{Y} $ , then $ \Phi_{\mathbf{Z}}\left(\omega\right)=E\left[e^{i\omega\left(a\mathbf{X}+b\mathbf{Y}\right)}\right]=E\left[e^{i\left(\left(\omega a\right)\mathbf{X}+\left(\omega b\right)\mathbf{Y}\right)}\right]=\Phi_{\mathbf{XY}}\left(\omega a,\omega b\right) $.

• This is used for sum of two Gaussian RVs.

Theorem

If two jointly-distributed RVs $ \mathbf{X} $ and $ \mathbf{Y} $ are statistically independent, then $ \Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=\Phi_{\mathbf{X}}\left(\omega_{1}\right)\mathbf{\Phi}_{\mathbf{Y}}\left(\omega_{2}\right) $ .

Proof

$ \Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=E\left[e^{i\left(\omega_{1}\mathbf{X}+\omega_{2}\mathbf{Y}\right)}\right]=E\left[e^{i\omega_{1}\mathbf{X}}e^{i\omega_{2}\mathbf{Y}}\right]=E\left[e^{i\omega_{1}\mathbf{X}}\right]E\left[e^{i\omega_{2}\mathbf{Y}}\right]=\Phi_{\mathbf{X}}\left(\omega_{1}\right)\mathbf{\Phi}_{\mathbf{Y}}\left(\omega_{2}\right) $.

$ \because \mathbf{X} $ and $ \mathbf{Y} $ are statistically independent

$ \Longrightarrow e^{i\omega_{1}\mathbf{X}} $ and $ e^{i\omega_{2}\mathbf{Y}} $ are statistically independent

$ \Longrightarrow e^{i\omega_{1}\mathbf{X}} $ and $ e^{i\omega_{2}\mathbf{Y}} $ are uncorrelated.

Fact

The joint characteristic function of two jointly-distributed Gaussian RVs is

$ \Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=e^{i\left(\eta_{\mathbf{X}}\omega_{1}+\eta_{\mathbf{Y}}\omega_{2}\right)}\cdot e^{-\frac{1}{2}\left[\sigma_{\mathbf{X}}^{2}\omega_{1}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}\omega_{1}\omega_{2}+\sigma_{\mathbf{Y}}^{2}\omega_{2}^{2}\right]} $.

If $ \mathbf{Z}=\mathbf{X}+\mathbf{Y} $ , then $ \eta_{\mathbf{Z}}=\eta_{\mathbf{X}}+\eta_{\mathbf{Y}} $ and $ \sigma_{\mathbf{Z}}=\sqrt{\sigma_{\mathbf{X}}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}+\sigma_{\mathbf{Y}}^{2}} $ because $ \Phi_{\mathbf{Z}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(\omega,\omega\right)=e^{i\left(\eta_{\mathbf{X}}+\eta_{\mathbf{Y}}\right)\omega}\cdot e^{-\frac{1}{2}\left[\sigma_{\mathbf{X}}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}+\sigma_{\mathbf{Y}}^{2}\right]\omega^{2}} $.

Joint Moment Generation Function

The joint moment generating function of two jointly-distributed RVs $ \mathbf{X} $ and $ \mathbf{Y} $ is

$ \phi_{\mathbf{XY}}\left(s_{1},s_{2}\right)\triangleq E\left[e^{s_{1}\mathbf{X}+s_{2}\mathbf{Y}}\right]=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{s_{1}\mathbf{X}+s_{2}\mathbf{Y}}f_{\mathbf{XY}}\left(x,y\right)dxdy $.

Moment Theorem

The joint noncentral moment $ E\left[\mathbf{X}^{j}\mathbf{Y}^{k}\right] $ is given by

$ E\left[\mathbf{X}^{j}\mathbf{Y}^{k}\right]=\frac{\partial^{j}\partial^{k}}{\partial s_{1}^{j}\partial s_{2}^{k}}\left(\phi_{\mathbf{XY}}\left(s_{1},s_{2}\right)\right)|_{s_{1}=0,s_{2}=0} $.


Back to ECE600

Back to ECE 600 Prerequisites

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett