(One intermediate revision by one other user not shown)
Line 2: Line 2:
 
From the [[ECE_600_Prerequisites|ECE600 Pre-requisites notes]] of  [[user:han84|Sangchun Han]], [[ECE]] PhD student.
 
From the [[ECE_600_Prerequisites|ECE600 Pre-requisites notes]] of  [[user:han84|Sangchun Han]], [[ECE]] PhD student.
 
----
 
----
If <math>y=g\left(x\right)\Longrightarrow x=g^{-1}\left(y\right)</math>  uniquely, then
+
If <math class="inline">y=g\left(x\right)\Longrightarrow x=g^{-1}\left(y\right)</math>  uniquely, then
  
 
<math>f_{\mathbf{Y}}\left(y\right)=f_{\mathbf{X}}\left(g^{-1}\left(y\right)\right)\left|\frac{dg^{-1}\left(y\right)}{dy}\right|=f_{\mathbf{X}}\left(\mathbf{X}\left(y\right)\right)\left|\frac{d\mathbf{X}\left(y\right)}{dy}\right|\text{ where }\mathbf{X}\left(y\right)=g^{-1}\left(y\right).</math>  
 
<math>f_{\mathbf{Y}}\left(y\right)=f_{\mathbf{X}}\left(g^{-1}\left(y\right)\right)\left|\frac{dg^{-1}\left(y\right)}{dy}\right|=f_{\mathbf{X}}\left(\mathbf{X}\left(y\right)\right)\left|\frac{d\mathbf{X}\left(y\right)}{dy}\right|\text{ where }\mathbf{X}\left(y\right)=g^{-1}\left(y\right).</math>  
Line 8: Line 8:
 
Example. Direct PDF Method
 
Example. Direct PDF Method
  
<math>f_{\mathbf{X}}\left(x\right)</math>  is given and <math>g\left(x\right)=ax+b</math>  where <math>a\neq0</math> .
+
*<math class="inline">f_{\mathbf{X}}\left(x\right)</math>  is given and <math class="inline">g\left(x\right)=ax+b</math>  where <math class="inline">a\neq0</math> .
  
<math>y=ax+b\Longrightarrow x=\frac{y-b}{a}\Longrightarrow\mathbf{X}\left(y\right)=\frac{y-b}{a}</math>  
+
*<math class="inline">y=ax+b\Longrightarrow x=\frac{y-b}{a}\Longrightarrow\mathbf{X}\left(y\right)=\frac{y-b}{a}</math>  
  
<math>f_{\mathbf{Y}}\left(y\right)=f_{\mathbf{X}}\left(\mathbf{X}\left(y\right)\right)\left|\frac{d\mathbf{X}\left(y\right)}{dy}\right|=f_{\mathbf{X}}\left(\frac{y-b}{a}\right)\left|\frac{1}{a}\right|=\left|\frac{1}{a}\right|\cdot f_{\mathbf{X}}\left(\frac{y-b}{a}\right)</math>
+
*<math class="inline">f_{\mathbf{Y}}\left(y\right)=f_{\mathbf{X}}\left(\mathbf{X}\left(y\right)\right)\left|\frac{d\mathbf{X}\left(y\right)}{dy}\right|=f_{\mathbf{X}}\left(\frac{y-b}{a}\right)\left|\frac{1}{a}\right|=\left|\frac{1}{a}\right|\cdot f_{\mathbf{X}}\left(\frac{y-b}{a}\right)</math>
 +
----
 +
[[ECE600|Back to ECE600]]
 +
 
 +
[[ECE 600 Prerequisites|Back to ECE 600 Prerequisites]]

Latest revision as of 10:30, 30 November 2010

1.9 Direct PDF Method

From the ECE600 Pre-requisites notes of Sangchun Han, ECE PhD student.


If $ y=g\left(x\right)\Longrightarrow x=g^{-1}\left(y\right) $ uniquely, then

$ f_{\mathbf{Y}}\left(y\right)=f_{\mathbf{X}}\left(g^{-1}\left(y\right)\right)\left|\frac{dg^{-1}\left(y\right)}{dy}\right|=f_{\mathbf{X}}\left(\mathbf{X}\left(y\right)\right)\left|\frac{d\mathbf{X}\left(y\right)}{dy}\right|\text{ where }\mathbf{X}\left(y\right)=g^{-1}\left(y\right). $

Example. Direct PDF Method

  • $ f_{\mathbf{X}}\left(x\right) $ is given and $ g\left(x\right)=ax+b $ where $ a\neq0 $ .
  • $ y=ax+b\Longrightarrow x=\frac{y-b}{a}\Longrightarrow\mathbf{X}\left(y\right)=\frac{y-b}{a} $
  • $ f_{\mathbf{Y}}\left(y\right)=f_{\mathbf{X}}\left(\mathbf{X}\left(y\right)\right)\left|\frac{d\mathbf{X}\left(y\right)}{dy}\right|=f_{\mathbf{X}}\left(\frac{y-b}{a}\right)\left|\frac{1}{a}\right|=\left|\frac{1}{a}\right|\cdot f_{\mathbf{X}}\left(\frac{y-b}{a}\right) $

Back to ECE600

Back to ECE 600 Prerequisites

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn