(5 intermediate revisions by one other user not shown)
Line 24: Line 24:
 
\end{align}
 
\end{align}
 
</math>
 
</math>
 +
 +
b. Place the center of filter (i.e. where m=0,n=0) upon the pixel of image. Multiply h[m,n] with x[m,n] of the correspondent position and sum the value. We can get
 +
 +
<math>
 +
\begin{align}
 +
y[0,0]=&0*h[-1,1]+0*h[0,1]+0*h[1,1]+ \\
 +
&0*h[-1,0]+1*h[0,0]+0*h[1,0] \\
 +
&1*h[-1,-1]+1*h[0,-1]+1*h[1,-1] \\
 +
=&1-\frac{1}{8}+\frac{1}{2}-\frac{1}{8} \\
 +
=&\frac{5}{4}
 +
\end{align}
 +
</math>
 +
 +
c. Notice that
 +
 +
<math>\mathbf{h}[m,n]=
 +
\begin{pmatrix}
 +
-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\
 +
-\frac{1}{4} & 1 & -\frac{1}{4} \\
 +
-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8}
 +
\end{pmatrix}
 +
=
 +
\begin{pmatrix}
 +
\frac{1}{2} \\
 +
1 \\
 +
\frac{1}{2}
 +
\end{pmatrix}
 +
\begin{pmatrix}
 +
-\frac{1}{4} & 1 & -\frac{1}{4}
 +
\end{pmatrix}
 +
</math>
 +
 +
Therefore \mathbf{h}[m,n] can be separated as outer product of two column vector given by
 +
 +
<math>\mathbf{h}[m,n]=\mathbf{h}_1[m]\mathbf{h}_2[n]^T</math>
 +
 +
where
 +
<math>
 +
\mathbf{h}_1[m]=
 +
\begin{pmatrix}
 +
\frac{1}{2} \\
 +
1 \\
 +
\frac{1}{2}
 +
\end{pmatrix}
 +
</math>
 +
and
 +
<math>
 +
\mathbf{h}_2[n]=
 +
\begin{pmatrix}
 +
-\frac{1}{4} \\
 +
1 \\
 +
-\frac{1}{4}
 +
\end{pmatrix}
 +
</math>
 +
 +
Then compute the CTFT of <math>h_1,h_2</math> we get
 +
 +
<math>H_1(u)=\frac{1}{2}e^{-ju(-1)}+e^{-ju(0)}+\frac{1}{2}e^{-ju(1)}</math>
 +
 +
<math>H_2(v)=-\frac{1}{4}e^{-jv(-1)}+e^{-jv(0)}-\frac{1}{4}e^{-jv(1)}</math>
 +
 +
According to the Separability property of CSFT, we get
 +
 +
<math>H(u,v)=H_1(u)H_2(v)=(1-\frac{1}{2}cosu)(1+cosv)</math>
 +
 +
  
 
----
 
----

Latest revision as of 06:16, 30 November 2010



Solution to Q3 of Week 14 Quiz Pool


a. According to the table, we have

$ \begin{align} h[m,n]=&-\frac{1}{8}\delta [m+1,n-1]+\frac{1}{2}\delta [m,n-1]-\frac{1}{8}\delta [m-1,n-1] \\ &-\frac{1}{4}\delta [m+1,n]+\delta [m,n]-\frac{1}{4}\delta [m,n-1] \\ &-\frac{1}{8}\delta [m+1,n+1]+\frac{1}{2}\delta [m,n+1]-\frac{1}{8}\delta [m-1,n+1] \end{align} $

Replace $ \delta [m,n] $ with general input signal $ x[m,n] $ we get the difference equation of the filter.

$ \begin{align} y[m,n]=&-\frac{1}{8}x[m+1,n-1]+\frac{1}{2}x[m,n-1]-\frac{1}{8}x[m-1,n-1] \\ &-\frac{1}{4}x[m+1,n]+x[m,n]-\frac{1}{4}x[m,n-1] \\ &-\frac{1}{8}x[m+1,n+1]+\frac{1}{2}x[m,n+1]-\frac{1}{8}x[m-1,n+1] \end{align} $

b. Place the center of filter (i.e. where m=0,n=0) upon the pixel of image. Multiply h[m,n] with x[m,n] of the correspondent position and sum the value. We can get

$ \begin{align} y[0,0]=&0*h[-1,1]+0*h[0,1]+0*h[1,1]+ \\ &0*h[-1,0]+1*h[0,0]+0*h[1,0] \\ &1*h[-1,-1]+1*h[0,-1]+1*h[1,-1] \\ =&1-\frac{1}{8}+\frac{1}{2}-\frac{1}{8} \\ =&\frac{5}{4} \end{align} $

c. Notice that

$ \mathbf{h}[m,n]= \begin{pmatrix} -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\ -\frac{1}{4} & 1 & -\frac{1}{4} \\ -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \\ \frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{4} & 1 & -\frac{1}{4} \end{pmatrix} $

Therefore \mathbf{h}[m,n] can be separated as outer product of two column vector given by

$ \mathbf{h}[m,n]=\mathbf{h}_1[m]\mathbf{h}_2[n]^T $

where $ \mathbf{h}_1[m]= \begin{pmatrix} \frac{1}{2} \\ 1 \\ \frac{1}{2} \end{pmatrix} $ and $ \mathbf{h}_2[n]= \begin{pmatrix} -\frac{1}{4} \\ 1 \\ -\frac{1}{4} \end{pmatrix} $

Then compute the CTFT of $ h_1,h_2 $ we get

$ H_1(u)=\frac{1}{2}e^{-ju(-1)}+e^{-ju(0)}+\frac{1}{2}e^{-ju(1)} $

$ H_2(v)=-\frac{1}{4}e^{-jv(-1)}+e^{-jv(0)}-\frac{1}{4}e^{-jv(1)} $

According to the Separability property of CSFT, we get

$ H(u,v)=H_1(u)H_2(v)=(1-\frac{1}{2}cosu)(1+cosv) $



Back to Lab Week 14 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett