(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q1 of Week 14 Quiz Pool == ---- ---- Back to Lab Week 14 Quiz Pool Back to [[ECE438_Lab_Fall_2010|ECE 4...)
 
 
Line 5: Line 5:
 
----
 
----
  
 +
Using the definition of the CSFT,<br/>
 +
<math>
 +
\begin{align}
  
 +
F(u,v) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi (ux+vy)}dxdy \\
 +
F(u,0) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi (ux)}dxdy \\
 +
  &= \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty}f(x,y) dy \right) e^{-j2\pi ux}dx \\
 +
  &= \int_{-\infty}^{\infty} p(x) e^{-j2\pi ux}dx \\
 +
  &= P(u) \\
 +
\end{align}
 +
</math>
 +
 +
so F(u,0) is the same as P(u) which is the CTFT of the function p(x).
 +
 +
Credit: Prof. Bouman
 
----
 
----
 
Back to [[ECE438_Week14_Quiz|Lab Week 14 Quiz Pool]]
 
Back to [[ECE438_Week14_Quiz|Lab Week 14 Quiz Pool]]

Latest revision as of 07:15, 28 November 2010



Solution to Q1 of Week 14 Quiz Pool


Using the definition of the CSFT,
$ \begin{align} F(u,v) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi (ux+vy)}dxdy \\ F(u,0) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi (ux)}dxdy \\ &= \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty}f(x,y) dy \right) e^{-j2\pi ux}dx \\ &= \int_{-\infty}^{\infty} p(x) e^{-j2\pi ux}dx \\ &= P(u) \\ \end{align} $

so F(u,0) is the same as P(u) which is the CTFT of the function p(x).

Credit: Prof. Bouman


Back to Lab Week 14 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett