Line 3: Line 3:
 
! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Inequalities
 
! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Inequalities
 
|-
 
|-
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Triangulare Inequalities
+
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Triangular Inequalities
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring)  
 
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring)  
Line 18: Line 18:
 
| align="right" style="padding-right: 1em;" | Exponential random variable with parameter <math>\lambda</math>
 
| align="right" style="padding-right: 1em;" | Exponential random variable with parameter <math>\lambda</math>
 
| <math>\,E[X] = \frac{1}{\lambda},\ \ Var(X) = \frac{1}{\lambda^2}\,</math>  
 
| <math>\,E[X] = \frac{1}{\lambda},\ \ Var(X) = \frac{1}{\lambda^2}\,</math>  
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Inequalities Involving Arithmetic, Geometric and Harmonic
 +
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Holder Inequality
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Tchebytchev Inequality
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Minkowski Inequality
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Cauchy-schwarz Inequality for Integrals
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Holder Inequality for Integrals
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Minkowski Inequality for Integrals
 +
|-
 
|}
 
|}
  

Revision as of 13:15, 24 November 2010

Inequalities
Triangular Inequalities
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
Cauchy-schwarz Inequality
Uniform random variable over (a,b) $ \,E[X] = \frac{a+b}{2},\ \ Var(X) = \frac{(b-a)^2}{12}\, $
Gaussian random variable with parameter $ \mu \mbox{ and } \sigma^2 $ $ \,E[X] = \mu,\ \ Var(X) = \sigma^2\, $
Exponential random variable with parameter $ \lambda $ $ \,E[X] = \frac{1}{\lambda},\ \ Var(X) = \frac{1}{\lambda^2}\, $
Inequalities Involving Arithmetic, Geometric and Harmonic
Holder Inequality
Tchebytchev Inequality
Minkowski Inequality
Cauchy-schwarz Inequality for Integrals
Holder Inequality for Integrals
Minkowski Inequality for Integrals

Back to Collective Table

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch