Line 19: Line 19:
 
|<math> \int u^n d u = \frac{u^{n+1}}{n+1} \qquad n \neq -1 </math>
 
|<math> \int u^n d u = \frac{u^{n+1}}{n+1} \qquad n \neq -1 </math>
 
|-
 
|-
|<math> \int \frac{d u}{u} = \ln u \ ( if \ u > 0 ) \ or \ln {-u} \ ( if \ u < 0 ) = \ln \left | u \right | </math>
+
|<math> \int \frac{d u}{u} = \ln u \ ( if \ u > 0 ) \ or \ln {-u} \ ( if \ u < 0 ) = \ln \left | u \right | </math>
 
|-
 
|-
 
|<math> \int e^u d u = e^u </math>
 
|<math> \int e^u d u = e^u </math>
Line 25: Line 25:
 
|<math> \int a^u d u = \int e^{u \ln a} d u = \frac{e^{u \ln a}}{\ln a} = \frac{a^u}{\ln a} \qquad a > 0 \ and \ a \neq 1</math>
 
|<math> \int a^u d u = \int e^{u \ln a} d u = \frac{e^{u \ln a}}{\ln a} = \frac{a^u}{\ln a} \qquad a > 0 \ and \ a \neq 1</math>
 
|-
 
|-
|<math> \int \sin u d u = - \cos u </math>
+
|<math> \int \sin u \ d u = - \cos u </math>
 +
|-
 +
|<math> \int \cos u \ d u =  \sin u </math>
 +
|-
 +
|<math> \int \tan u \ d u =  - \ln {\cos u} </math>
 +
|-
 +
|<math> \int \cot u \ d u =  \ln {\sin u} </math>
 +
|-
 +
|<math> \int \frac{d u}{\cos u} =  \ln {\frac{1}{\cos u} + \tan u}  = \ln{\tan  {\frac{u}{2}+\frac{\pi}{2}}} </math>
 
|-
 
|-
 
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Important Transformations
 
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Important Transformations

Revision as of 07:07, 19 November 2010

Table of Infinite Integrals
General Rules
$ \int a d x = a x $
$ \int a f ( x ) d x = a \int f ( x ) d x $
$ \int ( u \pm v \pm w \pm \cdot \cdot \cdot ) d x = \int u d x \pm \int v d x \pm \int w d x \pm \cdot \cdot \cdot $
$ \int u d v = u v - \int v d u $
$ \int f ( a x ) d x = \frac{1}{a} \int f ( u ) d u $
$ \int F { f ( x ) } d x = \int F ( u ) \frac{dx}{du} d u = \int \frac{F ( u )}{f^' ( x )} d u \qquad u = f ( x ) $
$ \int u^n d u = \frac{u^{n+1}}{n+1} \qquad n \neq -1 $
$ \int \frac{d u}{u} = \ln u \ ( if \ u > 0 ) \ or \ln {-u} \ ( if \ u < 0 ) = \ln \left | u \right | $
$ \int e^u d u = e^u $
$ \int a^u d u = \int e^{u \ln a} d u = \frac{e^{u \ln a}}{\ln a} = \frac{a^u}{\ln a} \qquad a > 0 \ and \ a \neq 1 $
$ \int \sin u \ d u = - \cos u $
$ \int \cos u \ d u = \sin u $
$ \int \tan u \ d u = - \ln {\cos u} $
$ \int \cot u \ d u = \ln {\sin u} $
$ \int \frac{d u}{\cos u} = \ln {\frac{1}{\cos u} + \tan u} = \ln{\tan {\frac{u}{2}+\frac{\pi}{2}}} $
Important Transformations
$ \int F( a x + b) d x =\frac{1}{a} \int F( u) d x \qquad u = a x + b $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn