(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q1 of Week 13 Quiz Pool == ---- Suppose <math>X(w)\,\!</math> is the DTFT of a discrete-time signal <math>x[n]\,\!</math>. What...)
 
Line 9: Line 9:
 
What is the DTFT of the time-reversal <math>x[-n]</math>?
 
What is the DTFT of the time-reversal <math>x[-n]</math>?
  
<math>\begin{align} & \sum_{n=-\inty}^{\infty} x[-n]e^{-jwn} \\ & \quad (\text{change of variable} \;\; m=-n) \\ = & \sum_{m=-\inty}^{\infty} x[m]e^{jwm} = X(-w) \\ \end{align}</math>
+
<math>\begin{align} & \sum_{n=-\infty}^{\infty} x[-n]e^{-jwn} \\ & \quad (\text{change of variable} \;\; m=-n) \\ = & \sum_{m=-\infty}^{\infty} x[m]e^{jwm} = X(-w) \\ \end{align}</math>
  
 
----
 
----

Revision as of 10:16, 17 November 2010



Solution to Q1 of Week 13 Quiz Pool


Suppose $ X(w)\,\! $ is the DTFT of a discrete-time signal $ x[n]\,\! $.

What is the DTFT of the time-reversal $ x[-n] $?

$ \begin{align} & \sum_{n=-\infty}^{\infty} x[-n]e^{-jwn} \\ & \quad (\text{change of variable} \;\; m=-n) \\ = & \sum_{m=-\infty}^{\infty} x[m]e^{jwm} = X(-w) \\ \end{align} $


Back to Lab Week 13 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva