(New page: ='''1.9 Direct PDF Method'''= If <math>y=g\left(x\right)\Longrightarrow x=g^{-1}\left(y\right)</math> uniquely, then <math>f_{\mathbf{Y}}\left(y\right)=f_{\mathbf{X}}\left(g^{-1}\left(y...)
 
Line 1: Line 1:
 
='''1.9 Direct PDF Method'''=
 
='''1.9 Direct PDF Method'''=
 
+
From the [[ECE_600_Prerequisites|ECE600 Pre-requisites notes]] of  [[user:han84|Sangchun Han]], [[ECE]] PhD student.
 +
----
 
If <math>y=g\left(x\right)\Longrightarrow x=g^{-1}\left(y\right)</math>  uniquely, then
 
If <math>y=g\left(x\right)\Longrightarrow x=g^{-1}\left(y\right)</math>  uniquely, then
  

Revision as of 10:12, 17 November 2010

1.9 Direct PDF Method

From the ECE600 Pre-requisites notes of Sangchun Han, ECE PhD student.


If $ y=g\left(x\right)\Longrightarrow x=g^{-1}\left(y\right) $ uniquely, then

$ f_{\mathbf{Y}}\left(y\right)=f_{\mathbf{X}}\left(g^{-1}\left(y\right)\right)\left|\frac{dg^{-1}\left(y\right)}{dy}\right|=f_{\mathbf{X}}\left(\mathbf{X}\left(y\right)\right)\left|\frac{d\mathbf{X}\left(y\right)}{dy}\right|\text{ where }\mathbf{X}\left(y\right)=g^{-1}\left(y\right). $

Example. Direct PDF Method

$ f_{\mathbf{X}}\left(x\right) $ is given and $ g\left(x\right)=ax+b $ where $ a\neq0 $ .

$ y=ax+b\Longrightarrow x=\frac{y-b}{a}\Longrightarrow\mathbf{X}\left(y\right)=\frac{y-b}{a} $

$ f_{\mathbf{Y}}\left(y\right)=f_{\mathbf{X}}\left(\mathbf{X}\left(y\right)\right)\left|\frac{d\mathbf{X}\left(y\right)}{dy}\right|=f_{\mathbf{X}}\left(\frac{y-b}{a}\right)\left|\frac{1}{a}\right|=\left|\frac{1}{a}\right|\cdot f_{\mathbf{X}}\left(\frac{y-b}{a}\right) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood