(New page: ='''2.1 Converge'''= Definition. Converge A sequence of numbers <math>x_{1},x_{2},\cdots,x_{n},\cdots</math> is said to converge to a limit <math>x</math> if, for every <math>\epsilon>...) |
|||
Line 1: | Line 1: | ||
− | ='''2.1 Converge'''= | + | = '''2.1 Converge''' = |
− | Definition. Converge | + | Definition. Converge |
− | A sequence of numbers < | + | A sequence of numbers <span class="texhtml">''x''<sub>1</sub>,''x''<sub>2</sub>,⋅⋅⋅,''x''<sub>''n''</sub>,⋅⋅⋅</span> is said to converge to a limit <span class="texhtml">''x''</span> if, for every <span class="texhtml">ε > 0</span> , there exists a number <math>n_{\epsilon}\in\mathbf{N}</math> such that <math>\left|x_{n}-x\right|<\epsilon,\;\forall n\geq n_{\epsilon}</math>. |
− | + | "<span class="texhtml">''x''<sub>''n''</sub>→''x'' as ''n''→∞</span>". | |
− | + | Given a random sequence <math>\mathbf{X}_{1}\left(\omega\right),\mathbf{X}_{2}\left(\omega\right),\cdots,\mathbf{X}_{n}\left(\omega\right),\cdots</math> for any particular <span class="texhtml">ω<sub>0</sub>∈''S''</span> , we have <math>\mathbf{X}_{1}\left(\omega_{0}\right),\mathbf{X}_{2}\left(\omega_{0}\right),\cdots,\mathbf{X}_{n}\left(\omega_{0}\right)</math> is a sequence of real numbers. | |
− | + | • It may converge to a number <math>\mathbf{X}\left(\omega_{0}\right)</math> that may be a function of <span class="texhtml">ω<sub>0</sub></span> . | |
− | + | • It may not converge. | |
− | + | Most likely, <math>\left\{ \mathbf{X}_{n}\left(\omega\right)\right\}</math> converge for some <span class="texhtml">ω∈''S''</span> and will diverge for other <span class="texhtml">ω∈''S''</span> . When we study stochastic convergence, we study the set <span class="texhtml">''A''⊂''S''</span> for which <math>\mathbf{X}_{1}\left(\omega\right),\mathbf{X}_{2}\left(\omega\right),\cdots,\mathbf{X}_{n}\left(\omega\right),\cdots</math> is a convergent sequence of real numbers. | |
− | + | 2.1.1 Definition. Converge everywhere | |
− | + | We say a sequence of random variables converges everywhere (e) if the sequence <math>\mathbf{X}_{1}\left(\omega\right),\mathbf{X}_{2}\left(\omega\right),\cdots,\mathbf{X}_{n}\left(\omega\right),\cdots</math> each converge to a number <math>\mathbf{X}\left(\omega\right)</math> for each <math>\omega\in\mathcal{S}</math> . | |
− | + | Note | |
− | + | • The number <math>\mathbf{X}\left(\omega\right)</math> that <math>\left\{ \mathbf{X}_{n}\left(\omega\right)\right\}</math> converges to is in general a function of <span class="texhtml">ω</span> . | |
− | + | • Convergence (e) is too strong to be useful. | |
− | 2.1. | + | 2.1.2 Definition. Converge almost everywhere |
− | + | A random sequence <math>\left\{ \mathbf{X}_{n}\left(\omega\right)\right\}</math> converges almost everywhere (a.e.) if the set of outcomes <math>A\subset\mathcal{S}</math> such that <math>\mathbf{X}_{n}\left(\omega\right)\rightarrow\mathbf{X}\left(\omega\right),\;\omega\in A</math> exists and has probability 1: <math>P\left(A\right)=1</math> . Other names for this are: almost surely (a.s.) and convergence with probability one. We write this as “<math>\mathbf{X}_{n}\rightarrow(a.e)\rightarrow\mathbf{X}</math> ” or “<math>P\left(\left\{ \mathbf{X}_{n}\rightarrow\mathbf{X}\right\} \right)=1.</math> ” | |
− | + | 2.1.3 Definition. Converge in mean-square | |
− | + | We say that a random sequence converges in mean-square (m.s.) to a random variable \mathbf{X} if E\left[\left|\mathbf{X}_{n}-\mathbf{X}\right|^{2}\right]\rightarrow0\textrm{ as }n\rightarrow\infty. | |
− | + | Note | |
− | + | Convergence (m.s.) is also called “limit in the mean convergence” and is written “l.i.m. \mathbf{X}_{n}=\mathbf{X} ” (bad). Better notation is \mathbf{X}_{n}\rightarrow(m.s.)\rightarrow\mathbf{X} . | |
− | + | 2.1.4 Definition. Converge in probability | |
− | + | A random sequence \left\{ \mathbf{X}_{n}\left(\omega\right)\right\} converges in probability (p) to a random variable \mathbf{X} if, \forall\epsilon>0 P\left(\left\{ \left|\mathbf{X}_{n}-\mathbf{X}\right|>\epsilon\right\} \right)\rightarrow0\textrm{ as }n\rightarrow\infty. | |
− | + | As opposed to P\left(\left\{ \mathbf{X}_{n}\rightarrow(a.e.)\rightarrow\mathbf{X}\right\} \right) . Convergence (a.e.) is a much stronger form of convergence. | |
− | + | 2.1.5 Definition. Converge in distribution | |
− | + | A random sequence \left\{ \mathbf{X}_{n}\left(\omega\right)\right\} converges in distribution (d) to a random variable \mathbf{X} if F_{\mathbf{X}_{n}}\left(x\right)\rightarrow F_{\mathbf{X}}\left(x\right) at every point x\in\mathbf{R} where F_{\mathbf{X}}\left(x\right) is continuous. | |
− | + | Example: Central Limit Theorem | |
− | 2.1. | + | 2.1.6 Definition. Converge in density |
− | + | A random sequence \left\{ \mathbf{X}_{n}\left(\omega\right)\right\} converges in density (density) to a random variable \mathbf{X} if f_{\mathbf{X}_{n}}\left(x\right)\rightarrow f_{\mathbf{X}}\left(x\right)\textrm{ as }n\rightarrow\infty for every x\in\mathbf{R} where F_{\mathbf{X}}\left(x\right) is continuous. | |
− | + | 2.1.7 Convergence in distribution vs. convergence in density | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | • | + | • Aren't convergence in density and distribution equivalent? NO! |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | • | + | • Example: Let \left\{ \mathbf{X}_{n}\left(\omega\right)\right\} be a sequence of random variables with \mathbf{X}_{n} having pdf f_{\mathbf{X}_{n}}\left(x\right)=\left[1+\cos\left(2\pi nx\right)\right]\cdot\mathbf{1}_{\left[0,1\right]}\left(x\right). f_{\mathbf{X}_{n}}\left(x\right) is a valid pdf for n=1,2,3,\cdots. The cdf of \mathbf{X}_{n} is F_{\mathbf{X}_{n}}\left(x\right)=\left\{ \begin{array}{lll} 0 & , & x<0\\ x+\frac{1}{2\pi n}\sin\left(x2\pi n\right) & , & x\in\left[0,1\right]\\ 1 & , & x>1. \end{array}\right. |
− | • | + | • Now defineF_{\mathbf{X}}\left(x\right)=\left\{ \begin{array}{lll} 0 & , & x<0\\ x & , & x\in\left[0,1\right]\\ 1 & , & x>1. \end{array}\right. |
− | • | + | • Because F_{\mathbf{X}_{n}}\left(x\right)\rightarrow F_{\mathbf{X}}\left(x\right) as n\rightarrow\infty ,\therefore\mathbf{X}_{n}\rightarrow\left(d\right)\rightarrow\mathbf{X}. |
− | • \ | + | • The pdf of \mathbf{X} corresponding to F_{\mathbf{X}}\left(x\right) is f_{\mathbf{X}}\left(x\right)=\mathbf{1}_{\left[0,1\right]}\left(x\right). |
− | + | • What does f_{\mathbf{X}_{n}}\left(x\right) look like? We do not have convergence in density. | |
− | + | • \therefore Convergence in density and convergence in distribution are NOT equivalent. In fact, convergence (density) \left(\nLeftarrow\right)\Longrightarrow convergence (distribution) | |
− | Cauchy criterion | + | 2.1.8 Cauchy criterion for convergence |
− | + | Recaull that a sequence of numbers x_{1},x_{2},\cdots,x_{n} converges to x if \forall\epsilon>0 , \exists n_{\epsilon}\in\mathbf{N} such that \left|x_{n}-x\right|<\epsilon,\;\forall n\geq n_{\epsilon}. To use this definition, you must know x . The Cauchy criterion gives us a way to test for convergence without knowing the limit x . | |
− | + | Cauchy criterion | |
− | + | If \left\{ x_{n}\right\} is a sequence of real numbers and \left|x_{n+m}-x_{n}\right|\rightarrow0 as n\rightarrow\infty for all m\in\mathbf{N} , then \left\{ x_{n}\right\} converges to a real number. | |
− | + | Note | |
+ | |||
+ | The Cauchy criterion can be applied to various forms of stochastic convergence. We look at: | ||
− | \mathbf{X}_{n} | + | \mathbf{X}_{n}\rightarrow\mathbf{X} (original) |
− | + | \mathbf{X}_{n} and \mathbf{X}_{n+m} (Cauchy criterion) | |
− | + | e.g. | |
− | 2 | + | If \varphi\left(n,m\right)=E\left[\left|\mathbf{X}_{n}-\mathbf{X}_{n+m}\right|^{2}\right]\rightarrow0 as n\rightarrow\infty for all m=1,2,\cdots , then \left\{ \mathbf{X}_{n}\right\} converges in mean-square. |
+ | 2.1.9 Comparison of modes of convergence | ||
+ | <br> | ||
− | convergence \left(m.s.\right) | + | convergence \left(m.s.\right) \Longrightarrow convergence \left(p\right) |
− | p\left(\left\{ \left|\mathbf{X}-\mu\right| | + | p\left(\left\{ \left|\mathbf{X}-\mu\right|>\epsilon\right\} \right)\leq\frac{E\left[\left(\mathbf{X}-\mu\right)^{2}\right]}{\epsilon^{2}}=\frac{\sigma_{\mathbf{X}}^{2}}{\epsilon^{2}} |
− | \Longrightarrow p\left(\left\{ \left|\mathbf{X}_{n}-\mathbf{X}\right| | + | \Longrightarrow p\left(\left\{ \left|\mathbf{X}_{n}-\mathbf{X}\right|>\epsilon\right\} \right)\leq\frac{E\left[\left(\mathbf{X}_{n}-\mathbf{X}\right)^{2}\right]}{\epsilon^{2}}. |
− | Thus, m.s. | + | Thus, m.s. convergence \Longrightarrow E\left[\left(\mathbf{X}_{n}-\mathbf{X}\right)^{2}\right]\rightarrow0 as n\rightarrow\infty \Longrightarrow p\left(\left\{ \left|\mathbf{X}_{n}-\mathbf{X}\right|>\epsilon\right\} \right)\rightarrow0 as n\rightarrow\infty . |
− | convergence \left(a.e.\right) | + | convergence \left(a.e.\right) \Longrightarrow convergence \left(p\right) |
− | Follows from definitions, converse is not true. | + | Follows from definitions, converse is not true. |
− | convergence \left(d\right) | + | convergence \left(d\right) is “weaker than” convergence \left(a.e.\right) , \left(m.s.\right) , or \left(p\right) . |
− | \left(a.e.\right)\Rightarrow\left(d\right) , \left(m.s.\right)\Rightarrow\left(d\right) , and \left(p\right)\Rightarrow\left(d\right) . | + | \left(a.e.\right)\Rightarrow\left(d\right) , \left(m.s.\right)\Rightarrow\left(d\right) , and \left(p\right)\Rightarrow\left(d\right) . |
− | Note | + | Note |
− | \left(a.e.\right)\nRightarrow\left(m.s.\right) | + | \left(a.e.\right)\nRightarrow\left(m.s.\right) and \left(m.s.\right)\nRightarrow\left(a.e.\right) . |
− | Note | + | Note |
− | The Chebyshev inequality is a valuable tool for working with m.s. | + | The Chebyshev inequality is a valuable tool for working with m.s. convergence. |
Revision as of 06:55, 17 November 2010
2.1 Converge
Definition. Converge
A sequence of numbers x1,x2,⋅⋅⋅,xn,⋅⋅⋅ is said to converge to a limit x if, for every ε > 0 , there exists a number $ n_{\epsilon}\in\mathbf{N} $ such that $ \left|x_{n}-x\right|<\epsilon,\;\forall n\geq n_{\epsilon} $.
"xn→x as n→∞".
Given a random sequence $ \mathbf{X}_{1}\left(\omega\right),\mathbf{X}_{2}\left(\omega\right),\cdots,\mathbf{X}_{n}\left(\omega\right),\cdots $ for any particular ω0∈S , we have $ \mathbf{X}_{1}\left(\omega_{0}\right),\mathbf{X}_{2}\left(\omega_{0}\right),\cdots,\mathbf{X}_{n}\left(\omega_{0}\right) $ is a sequence of real numbers.
• It may converge to a number $ \mathbf{X}\left(\omega_{0}\right) $ that may be a function of ω0 .
• It may not converge.
Most likely, $ \left\{ \mathbf{X}_{n}\left(\omega\right)\right\} $ converge for some ω∈S and will diverge for other ω∈S . When we study stochastic convergence, we study the set A⊂S for which $ \mathbf{X}_{1}\left(\omega\right),\mathbf{X}_{2}\left(\omega\right),\cdots,\mathbf{X}_{n}\left(\omega\right),\cdots $ is a convergent sequence of real numbers.
2.1.1 Definition. Converge everywhere
We say a sequence of random variables converges everywhere (e) if the sequence $ \mathbf{X}_{1}\left(\omega\right),\mathbf{X}_{2}\left(\omega\right),\cdots,\mathbf{X}_{n}\left(\omega\right),\cdots $ each converge to a number $ \mathbf{X}\left(\omega\right) $ for each $ \omega\in\mathcal{S} $ .
Note
• The number $ \mathbf{X}\left(\omega\right) $ that $ \left\{ \mathbf{X}_{n}\left(\omega\right)\right\} $ converges to is in general a function of ω .
• Convergence (e) is too strong to be useful.
2.1.2 Definition. Converge almost everywhere
A random sequence $ \left\{ \mathbf{X}_{n}\left(\omega\right)\right\} $ converges almost everywhere (a.e.) if the set of outcomes $ A\subset\mathcal{S} $ such that $ \mathbf{X}_{n}\left(\omega\right)\rightarrow\mathbf{X}\left(\omega\right),\;\omega\in A $ exists and has probability 1: $ P\left(A\right)=1 $ . Other names for this are: almost surely (a.s.) and convergence with probability one. We write this as “$ \mathbf{X}_{n}\rightarrow(a.e)\rightarrow\mathbf{X} $ ” or “$ P\left(\left\{ \mathbf{X}_{n}\rightarrow\mathbf{X}\right\} \right)=1. $ ”
2.1.3 Definition. Converge in mean-square
We say that a random sequence converges in mean-square (m.s.) to a random variable \mathbf{X} if E\left[\left|\mathbf{X}_{n}-\mathbf{X}\right|^{2}\right]\rightarrow0\textrm{ as }n\rightarrow\infty.
Note
Convergence (m.s.) is also called “limit in the mean convergence” and is written “l.i.m. \mathbf{X}_{n}=\mathbf{X} ” (bad). Better notation is \mathbf{X}_{n}\rightarrow(m.s.)\rightarrow\mathbf{X} .
2.1.4 Definition. Converge in probability
A random sequence \left\{ \mathbf{X}_{n}\left(\omega\right)\right\} converges in probability (p) to a random variable \mathbf{X} if, \forall\epsilon>0 P\left(\left\{ \left|\mathbf{X}_{n}-\mathbf{X}\right|>\epsilon\right\} \right)\rightarrow0\textrm{ as }n\rightarrow\infty.
As opposed to P\left(\left\{ \mathbf{X}_{n}\rightarrow(a.e.)\rightarrow\mathbf{X}\right\} \right) . Convergence (a.e.) is a much stronger form of convergence.
2.1.5 Definition. Converge in distribution
A random sequence \left\{ \mathbf{X}_{n}\left(\omega\right)\right\} converges in distribution (d) to a random variable \mathbf{X} if F_{\mathbf{X}_{n}}\left(x\right)\rightarrow F_{\mathbf{X}}\left(x\right) at every point x\in\mathbf{R} where F_{\mathbf{X}}\left(x\right) is continuous.
Example: Central Limit Theorem
2.1.6 Definition. Converge in density
A random sequence \left\{ \mathbf{X}_{n}\left(\omega\right)\right\} converges in density (density) to a random variable \mathbf{X} if f_{\mathbf{X}_{n}}\left(x\right)\rightarrow f_{\mathbf{X}}\left(x\right)\textrm{ as }n\rightarrow\infty for every x\in\mathbf{R} where F_{\mathbf{X}}\left(x\right) is continuous.
2.1.7 Convergence in distribution vs. convergence in density
• Aren't convergence in density and distribution equivalent? NO!
• Example: Let \left\{ \mathbf{X}_{n}\left(\omega\right)\right\} be a sequence of random variables with \mathbf{X}_{n} having pdf f_{\mathbf{X}_{n}}\left(x\right)=\left[1+\cos\left(2\pi nx\right)\right]\cdot\mathbf{1}_{\left[0,1\right]}\left(x\right). f_{\mathbf{X}_{n}}\left(x\right) is a valid pdf for n=1,2,3,\cdots. The cdf of \mathbf{X}_{n} is F_{\mathbf{X}_{n}}\left(x\right)=\left\{ \begin{array}{lll} 0 & , & x<0\\ x+\frac{1}{2\pi n}\sin\left(x2\pi n\right) & , & x\in\left[0,1\right]\\ 1 & , & x>1. \end{array}\right.
• Now defineF_{\mathbf{X}}\left(x\right)=\left\{ \begin{array}{lll} 0 & , & x<0\\ x & , & x\in\left[0,1\right]\\ 1 & , & x>1. \end{array}\right.
• Because F_{\mathbf{X}_{n}}\left(x\right)\rightarrow F_{\mathbf{X}}\left(x\right) as n\rightarrow\infty ,\therefore\mathbf{X}_{n}\rightarrow\left(d\right)\rightarrow\mathbf{X}.
• The pdf of \mathbf{X} corresponding to F_{\mathbf{X}}\left(x\right) is f_{\mathbf{X}}\left(x\right)=\mathbf{1}_{\left[0,1\right]}\left(x\right).
• What does f_{\mathbf{X}_{n}}\left(x\right) look like? We do not have convergence in density.
• \therefore Convergence in density and convergence in distribution are NOT equivalent. In fact, convergence (density) \left(\nLeftarrow\right)\Longrightarrow convergence (distribution)
2.1.8 Cauchy criterion for convergence
Recaull that a sequence of numbers x_{1},x_{2},\cdots,x_{n} converges to x if \forall\epsilon>0 , \exists n_{\epsilon}\in\mathbf{N} such that \left|x_{n}-x\right|<\epsilon,\;\forall n\geq n_{\epsilon}. To use this definition, you must know x . The Cauchy criterion gives us a way to test for convergence without knowing the limit x .
Cauchy criterion
If \left\{ x_{n}\right\} is a sequence of real numbers and \left|x_{n+m}-x_{n}\right|\rightarrow0 as n\rightarrow\infty for all m\in\mathbf{N} , then \left\{ x_{n}\right\} converges to a real number.
Note
The Cauchy criterion can be applied to various forms of stochastic convergence. We look at:
\mathbf{X}_{n}\rightarrow\mathbf{X} (original)
\mathbf{X}_{n} and \mathbf{X}_{n+m} (Cauchy criterion)
e.g.
If \varphi\left(n,m\right)=E\left[\left|\mathbf{X}_{n}-\mathbf{X}_{n+m}\right|^{2}\right]\rightarrow0 as n\rightarrow\infty for all m=1,2,\cdots , then \left\{ \mathbf{X}_{n}\right\} converges in mean-square.
2.1.9 Comparison of modes of convergence
convergence \left(m.s.\right) \Longrightarrow convergence \left(p\right)
p\left(\left\{ \left|\mathbf{X}-\mu\right|>\epsilon\right\} \right)\leq\frac{E\left[\left(\mathbf{X}-\mu\right)^{2}\right]}{\epsilon^{2}}=\frac{\sigma_{\mathbf{X}}^{2}}{\epsilon^{2}}
\Longrightarrow p\left(\left\{ \left|\mathbf{X}_{n}-\mathbf{X}\right|>\epsilon\right\} \right)\leq\frac{E\left[\left(\mathbf{X}_{n}-\mathbf{X}\right)^{2}\right]}{\epsilon^{2}}.
Thus, m.s. convergence \Longrightarrow E\left[\left(\mathbf{X}_{n}-\mathbf{X}\right)^{2}\right]\rightarrow0 as n\rightarrow\infty \Longrightarrow p\left(\left\{ \left|\mathbf{X}_{n}-\mathbf{X}\right|>\epsilon\right\} \right)\rightarrow0 as n\rightarrow\infty .
convergence \left(a.e.\right) \Longrightarrow convergence \left(p\right)
Follows from definitions, converse is not true.
convergence \left(d\right) is “weaker than” convergence \left(a.e.\right) , \left(m.s.\right) , or \left(p\right) .
\left(a.e.\right)\Rightarrow\left(d\right) , \left(m.s.\right)\Rightarrow\left(d\right) , and \left(p\right)\Rightarrow\left(d\right) .
Note
\left(a.e.\right)\nRightarrow\left(m.s.\right) and \left(m.s.\right)\nRightarrow\left(a.e.\right) .
Note
The Chebyshev inequality is a valuable tool for working with m.s. convergence.