(New page: ='''1.13 etc.'''= Inner product space Any Euclidean space <math>\mathbf{R}^{n}</math> with dot product is an inner product space. <math>\left\langle \left(x_{1},\cdots,x_{n}\right),\le...)
 
Line 6: Line 6:
  
 
<math>\left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i}</math>
 
<math>\left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i}</math>
 +
 +
----
 +
[[ECE600|Back to ECE600]]
 +
 +
[[ECE 600 Prerequisites|Back to ECE 600 Prerequisites]]

Revision as of 06:09, 17 November 2010

1.13 etc.

Inner product space

Any Euclidean space $ \mathbf{R}^{n} $ with dot product is an inner product space.

$ \left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i} $


Back to ECE600

Back to ECE 600 Prerequisites

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett