(New page: == Homework 12 collaboration area == Back to the MA 527 start page To Rhea Course List Category:MA5272010Bell)
 
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== Homework 12 collaboration area ==
+
== Homework 12 Solutions ==
 +
 
 +
517: 1.
 +
 
 +
<math>\hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left(
 +
\int_0^1(-1)\cos(wx)\,dx+
 +
\int_1^2(1)\cos(wx)\,dx
 +
\right)=
 +
</math>
 +
 
 +
<math>=\sqrt{\frac{2}{\pi}}\left([-\frac{1}{w}\sin(wx)]_0^1
 +
+[\frac{1}{w}\sin(wx)]_1^2\right)=
 +
</math>
 +
 
 +
<math>=\sqrt{\frac{2}{\pi}}\ \frac{1}{w}\left(
 +
-(\sin(w)-0)+(\sin(2w)-\sin(w))
 +
\right)=</math>
 +
 
 +
<math>=\sqrt{\frac{2}{\pi}}\ \frac{\sin(2w)-2\sin(w)}{w}.</math>
 +
 
 +
517: 2.
 +
 
 +
<math>\hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left(
 +
\int_0^k x\cos(wx)\,dx\right)=
 +
</math>
 +
 
 +
<math>=\sqrt{\frac{2}{\pi}}\left(\left[\frac{x}{w}\sin(wx)+\frac{1}{w^2}\cos(wx)\right]_0^k
 +
\right)=
 +
</math>
 +
 
 +
<math>\sqrt{\frac{2}{\pi}}\left(\frac{k}{w}\sin(kw)+\frac{1}{w^2}\cos(kw)
 +
-\frac{1}{w^2}\right).</math>
 +
 
 +
517: 5. See page 2 of Bell's 11/10/2010 lecture at
 +
[http://www.math.purdue.edu/~bell/MA527/Lectures/lec11-10.pdf Lesson 33]
 +
 
 +
517: 7. See
 +
[http://www.math.purdue.edu/~bell/MA527/HWK/p517_7.pdf p. 517: 7 Solution]
 +
 
 +
And for solutions to the three problems on p. 528, go to
 +
[http://www.math.purdue.edu/~bell/MA527/jing Bell's Jing things]
 +
 
 +
[http://www.math.purdue.edu/~bell/MA527/prac2solns.pdf Exam 2 Practice Problem Solutions]
  
  

Latest revision as of 11:06, 16 November 2010

Homework 12 Solutions

517: 1.

$ \hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left( \int_0^1(-1)\cos(wx)\,dx+ \int_1^2(1)\cos(wx)\,dx \right)= $

$ =\sqrt{\frac{2}{\pi}}\left([-\frac{1}{w}\sin(wx)]_0^1 +[\frac{1}{w}\sin(wx)]_1^2\right)= $

$ =\sqrt{\frac{2}{\pi}}\ \frac{1}{w}\left( -(\sin(w)-0)+(\sin(2w)-\sin(w)) \right)= $

$ =\sqrt{\frac{2}{\pi}}\ \frac{\sin(2w)-2\sin(w)}{w}. $

517: 2.

$ \hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left( \int_0^k x\cos(wx)\,dx\right)= $

$ =\sqrt{\frac{2}{\pi}}\left(\left[\frac{x}{w}\sin(wx)+\frac{1}{w^2}\cos(wx)\right]_0^k \right)= $

$ \sqrt{\frac{2}{\pi}}\left(\frac{k}{w}\sin(kw)+\frac{1}{w^2}\cos(kw) -\frac{1}{w^2}\right). $

517: 5. See page 2 of Bell's 11/10/2010 lecture at Lesson 33

517: 7. See p. 517: 7 Solution

And for solutions to the three problems on p. 528, go to Bell's Jing things

Exam 2 Practice Problem Solutions


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang