Line 26: | Line 26: | ||
|- | |- | ||
| align="right" style="padding-right: 1em;" | | | align="right" style="padding-right: 1em;" | | ||
− | ([[ | + | ([[2D_sinc|info]]) 2D sinc function |
| <math>sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}</math> | | <math>sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | ([[2D_rect|info]]) 2D rect function | ||
+ | | <math>rect(x,y)= \left\{ \begin{array}{ll}1, & |x|\leq \frac{1}{2} \text{ and } |y|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ for }x,y\in {\mathbb R}</math> | ||
|} | |} | ||
Revision as of 12:35, 12 November 2010
Basic Signals and Functions in one variable | |
---|---|
Continuous-time signals | |
sinc function | $ sinc(t )=\frac{sin(\pi t )}{\pi\theta}, \text{ for }t\in {\mathbb R} $ |
rect function | $ rect (t) = \left\{ \begin{array}{ll}1, & |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R} $ |
CT unit step function | $ u(t)=\left\{ \begin{array}{ll}1, & t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R} $ |
Discrete-time signals | |
DT unit step function | $ u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} $ |
CT unit impulse (Dirac Delta) | |
Basic Signals and Functions in two variables | |
Continuous-time | |
(info) 2D sinc dirac delta |
$ \delta(x,y)=\delta(x) \delta(y) $ |
(info) 2D sinc function |
$ sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2} $ |
(info) 2D rect function |
$ rect(x,y)= \left\{ \begin{array}{ll}1, & |x|\leq \frac{1}{2} \text{ and } |y|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ for }x,y\in {\mathbb R} $ |