Line 1: Line 1:
 
{|
 
{|
 
|-  
 
|-  
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Definition of Basic Signals and Functions
+
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Basic Signals and Functions in one variable
 
|-
 
|-
! colspan="2" style="background: #eee;" | Sinc, Jinc, etc.
+
! colspan="2" style="background: #eee;" | Continuous-time signals
 
|-
 
|-
| align="right" style="padding-right: 1em;" | sinc function || <math>sinc(\theta)=\frac{sin(\pi\theta)}{\pi\theta}</math>
+
| align="right" style="padding-right: 1em;" | sinc function || <math>sinc(t )=\frac{sin(\pi t )}{\pi\theta}, \text{ for }t\in {\mathbb R}</math>
 
|-
 
|-
! colspan="2" style="background: #eee;" | step function and related
+
| align="right" style="padding-right: 1em;" | rect function || <math>rect (t) = \left\{ \begin{array}{ll}1, & |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R}</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | CT unit step function || <math> u(t)=\left\{ \begin{array}{ll}1, & t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R}</math>
 
| align="right" style="padding-right: 1em;" | CT unit step function || <math> u(t)=\left\{ \begin{array}{ll}1, & t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R}</math>
 +
|-
 +
! colspan="2" style="background: #eee;" | Discrete-time signals
 
|-  
 
|-  
 
| align="right" style="padding-right: 1em;" | DT unit step function || <math>u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} </math>
 
| align="right" style="padding-right: 1em;" | DT unit step function || <math>u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} </math>
|-
 
! colspan="2" style="background: #eee;" | unit impulse signal (Dirac Delta) and related
 
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | CT unit impulse (Dirac Delta) ||  
 
| align="right" style="padding-right: 1em;" | CT unit impulse (Dirac Delta) ||  
 +
|-
 +
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Basic Signals and Functions in two variables
 +
|-
 +
! colspan="2" style="background: #eee;" | Continuous-time
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
([[2D_delta|info]]) 2D sinc dirac delta
 +
| <math>\delta(x,y)=\delta(x) \delta(y)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
([[2D_Sinc|info]]) 2D sinc function
 +
| <math>sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}</math>
 
|}
 
|}
  

Revision as of 12:32, 12 November 2010

Basic Signals and Functions in one variable
Continuous-time signals
sinc function $ sinc(t )=\frac{sin(\pi t )}{\pi\theta}, \text{ for }t\in {\mathbb R} $
rect function $ rect (t) = \left\{ \begin{array}{ll}1, & |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R} $
CT unit step function $ u(t)=\left\{ \begin{array}{ll}1, & t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R} $
Discrete-time signals
DT unit step function $ u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} $
CT unit impulse (Dirac Delta)
Basic Signals and Functions in two variables
Continuous-time

(info) 2D sinc dirac delta

$ \delta(x,y)=\delta(x) \delta(y) $

(info) 2D sinc function

$ sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2} $

Back to Collective Table

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett