(23 intermediate revisions by 6 users not shown)
Line 1: Line 1:
== Homework 6 collaboration area ==
+
== Homework 6 Solutions ==
 
+
Here is something to get you started:
+
 
+
<math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt</math>
+
 
+
<math>\mathcal{L}[f'(t)]= sF(s)-f(0)</math>
+
  
 
p. 226: 1.
 
p. 226: 1.
  
<math>\mathcal{L}[t^2-2t]= \frac{2}{s^3}-2\frac{1}{s^2}</math>
+
<math>\mathcal{L}[t^2-2t]= \mathcal{L}[t^2]-2\mathcal{L}[t]</math>
 +
 
 +
<math>= \frac{2}{s^3}-2\frac{1}{s^2}</math>
  
 
Odd solutions in the back of the book.
 
Odd solutions in the back of the book.
  
p. 226: #2: who can validate this?
+
p. 226: #2:
  
 
<math>\mathcal(t^2 - 3)^2</math>
 
<math>\mathcal(t^2 - 3)^2</math>
  
<math>\mathcal[F(s)] = {L}f(t) = \int_0^\infty e^{-st}f(t)\ dt</math>
+
<math> = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 </math>
  
<math>\mathcal[f(t)] = (t^2 - 3)(t^2 - 3) = t^4 - 9t^2 + 9 </math>
+
So
  
<math>\mathcal[F(s)] = \int_0^\infty e^{-st}(t^4 - 9t^2 + 9)\ dt </math>
+
<math>\mathcal{L}[(t^2-3)^2] =  
 +
\mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]=</math>
  
<math>\mathcal[F(s)] = \int_0^\infty [t^4 e^{-st} - 9t^2 e^{-st} + 9 e^{-st}]\ dt </math>
 
  
<math>\mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}]e^{-st} </math>
+
<math> = \frac{4!}{s^5} - 6\frac{2!}{s^3} + \frac{9}{s}</math>
  
<math>\mathcal [e^{-st}] = 1 </math>  therefore  <math>\mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}]</math>  DONE?
 
  
 +
p. 226: #4:
  
-Does anyone have a hint on solving #23?
+
<math>\ sin^2 4 t = \frac {1 - cos2(4t)}{2} </math>
  
 +
So the Laplace Transform can be gotten from the table.
  
 +
p. 226: #23.
 +
 +
<math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s).</math>
 +
 +
So
 +
 +
<math>\mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt.</math>
 +
 +
Make the change of variables
 +
 +
<math>\tau=ct</math>
 +
 +
to get
 +
 +
<math>\mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\ (1/c) d\tau=</math>
 +
 +
<math>\frac{1}{c}F(s/c).</math>
  
 
Even solutions (added by Adam M on Oct 5, please check results):
 
Even solutions (added by Adam M on Oct 5, please check results):
Line 46: Line 60:
 
p. 226: 30.
 
p. 226: 30.
  
<math>inverse \mathcal{L}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math>
+
<math>\mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math>
  
 
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get
 
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get
  <math>inverse \mathcal{L}=-e^{-4t}+3e^{4t}</math>
+
  <math>\mathcal{L}^{-1}=-e^{-4t}+3e^{4t}</math>
 +
 
 +
AJ, I was able to get your answer and verified that it is correct.  However, I am unable to see why my initial answer was wrong.  I seperated as follows:
 +
 
 +
<math>\mathcal{L}^{-1}[2*\frac{s}{s^2-4^2}+4*\frac{4}{s^2-4^2}]</math>
 +
 
 +
then used (8) and (9) from Table 6.1.  Thoughts?
 +
 
 +
They are actually the exact same thing, so both answers should be correct. This can be proven using:
 +
 
 +
cosh(bx) = (1/2)*(e^(bx) + e^(-bx))
 +
 
 +
sinh(bx) = (1/2)*(e^(bx) - e^(-bx))
 +
 
 +
--[[User:Idougla|Idougla]] 23:40, 7 October 2010 (UTC)
 +
 
 +
Thank you!
 +
 
 +
P. 226: 39.
 +
Can somebody post a solution for 39?  I must be missing something on this one.
 +
 
 +
Re-write as:
 +
 
 +
<math>\mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}]</math>
  
  

Latest revision as of 08:12, 11 November 2010

Homework 6 Solutions

p. 226: 1.

$ \mathcal{L}[t^2-2t]= \mathcal{L}[t^2]-2\mathcal{L}[t] $

$ = \frac{2}{s^3}-2\frac{1}{s^2} $

Odd solutions in the back of the book.

p. 226: #2:

$ \mathcal(t^2 - 3)^2 $

$ = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 $

So

$ \mathcal{L}[(t^2-3)^2] = \mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]= $


$ = \frac{4!}{s^5} - 6\frac{2!}{s^3} + \frac{9}{s} $


p. 226: #4:

$ \ sin^2 4 t = \frac {1 - cos2(4t)}{2} $

So the Laplace Transform can be gotten from the table.

p. 226: #23.

$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s). $

So

$ \mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt. $

Make the change of variables

$ \tau=ct $

to get

$ \mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\ (1/c) d\tau= $

$ \frac{1}{c}F(s/c). $

Even solutions (added by Adam M on Oct 5, please check results):

p. 226: 10.

$ \mathcal{L}[-8sin(0.2t)]=\frac{-1.6}{s^2+0.04} $

p. 226: 12.

$ \mathcal{L}[(t+1)^3]=\frac{6}{s^4}+\frac{6}{s^3}+\frac{3}{s^2}+\frac{1}{s} $

p. 226: 30.

$ \mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t) $

(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get

$ \mathcal{L}^{-1}=-e^{-4t}+3e^{4t} $

AJ, I was able to get your answer and verified that it is correct. However, I am unable to see why my initial answer was wrong. I seperated as follows:

$ \mathcal{L}^{-1}[2*\frac{s}{s^2-4^2}+4*\frac{4}{s^2-4^2}] $

then used (8) and (9) from Table 6.1. Thoughts?

They are actually the exact same thing, so both answers should be correct. This can be proven using:

cosh(bx) = (1/2)*(e^(bx) + e^(-bx))

sinh(bx) = (1/2)*(e^(bx) - e^(-bx))

--Idougla 23:40, 7 October 2010 (UTC)

Thank you!

P. 226: 39. Can somebody post a solution for 39? I must be missing something on this one.

Re-write as:

$ \mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}] $


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood