(37 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
− | == Homework 6 | + | == Homework 6 Solutions == |
− | + | p. 226: 1. | |
− | <math>\mathcal{L}[ | + | <math>\mathcal{L}[t^2-2t]= \mathcal{L}[t^2]-2\mathcal{L}[t]</math> |
− | <math>\ | + | <math>= \frac{2}{s^3}-2\frac{1}{s^2}</math> |
− | + | Odd solutions in the back of the book. | |
− | + | p. 226: #2: | |
− | + | <math>\mathcal(t^2 - 3)^2</math> | |
− | + | <math> = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 </math> | |
− | <math> | + | |
+ | So | ||
− | - | + | <math>\mathcal{L}[(t^2-3)^2] = |
+ | \mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]=</math> | ||
+ | <math> = \frac{4!}{s^5} - 6\frac{2!}{s^3} + \frac{9}{s}</math> | ||
+ | |||
+ | |||
+ | p. 226: #4: | ||
+ | |||
+ | <math>\ sin^2 4 t = \frac {1 - cos2(4t)}{2} </math> | ||
+ | |||
+ | So the Laplace Transform can be gotten from the table. | ||
+ | |||
+ | p. 226: #23. | ||
+ | |||
+ | <math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s).</math> | ||
+ | |||
+ | So | ||
+ | |||
+ | <math>\mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt.</math> | ||
+ | |||
+ | Make the change of variables | ||
+ | |||
+ | <math>\tau=ct</math> | ||
+ | |||
+ | to get | ||
+ | |||
+ | <math>\mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\ (1/c) d\tau=</math> | ||
+ | |||
+ | <math>\frac{1}{c}F(s/c).</math> | ||
Even solutions (added by Adam M on Oct 5, please check results): | Even solutions (added by Adam M on Oct 5, please check results): | ||
Line 33: | Line 60: | ||
p. 226: 30. | p. 226: 30. | ||
− | <math> | + | <math>\mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math> |
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get | (AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get | ||
− | <math> | + | <math>\mathcal{L}^{-1}=-e^{-4t}+3e^{4t}</math> |
+ | |||
+ | AJ, I was able to get your answer and verified that it is correct. However, I am unable to see why my initial answer was wrong. I seperated as follows: | ||
+ | |||
+ | <math>\mathcal{L}^{-1}[2*\frac{s}{s^2-4^2}+4*\frac{4}{s^2-4^2}]</math> | ||
+ | |||
+ | then used (8) and (9) from Table 6.1. Thoughts? | ||
+ | |||
+ | They are actually the exact same thing, so both answers should be correct. This can be proven using: | ||
+ | |||
+ | cosh(bx) = (1/2)*(e^(bx) + e^(-bx)) | ||
+ | |||
+ | sinh(bx) = (1/2)*(e^(bx) - e^(-bx)) | ||
+ | |||
+ | --[[User:Idougla|Idougla]] 23:40, 7 October 2010 (UTC) | ||
+ | |||
+ | Thank you! | ||
+ | |||
+ | P. 226: 39. | ||
+ | Can somebody post a solution for 39? I must be missing something on this one. | ||
+ | |||
+ | Re-write as: | ||
+ | |||
+ | <math>\mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}]</math> | ||
Latest revision as of 08:12, 11 November 2010
Homework 6 Solutions
p. 226: 1.
$ \mathcal{L}[t^2-2t]= \mathcal{L}[t^2]-2\mathcal{L}[t] $
$ = \frac{2}{s^3}-2\frac{1}{s^2} $
Odd solutions in the back of the book.
p. 226: #2:
$ \mathcal(t^2 - 3)^2 $
$ = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 $
So
$ \mathcal{L}[(t^2-3)^2] = \mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]= $
$ = \frac{4!}{s^5} - 6\frac{2!}{s^3} + \frac{9}{s} $
p. 226: #4:
$ \ sin^2 4 t = \frac {1 - cos2(4t)}{2} $
So the Laplace Transform can be gotten from the table.
p. 226: #23.
$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s). $
So
$ \mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt. $
Make the change of variables
$ \tau=ct $
to get
$ \mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\ (1/c) d\tau= $
$ \frac{1}{c}F(s/c). $
Even solutions (added by Adam M on Oct 5, please check results):
p. 226: 10.
$ \mathcal{L}[-8sin(0.2t)]=\frac{-1.6}{s^2+0.04} $
p. 226: 12.
$ \mathcal{L}[(t+1)^3]=\frac{6}{s^4}+\frac{6}{s^3}+\frac{3}{s^2}+\frac{1}{s} $
p. 226: 30.
$ \mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t) $
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get
$ \mathcal{L}^{-1}=-e^{-4t}+3e^{4t} $
AJ, I was able to get your answer and verified that it is correct. However, I am unable to see why my initial answer was wrong. I seperated as follows:
$ \mathcal{L}^{-1}[2*\frac{s}{s^2-4^2}+4*\frac{4}{s^2-4^2}] $
then used (8) and (9) from Table 6.1. Thoughts?
They are actually the exact same thing, so both answers should be correct. This can be proven using:
cosh(bx) = (1/2)*(e^(bx) + e^(-bx))
sinh(bx) = (1/2)*(e^(bx) - e^(-bx))
--Idougla 23:40, 7 October 2010 (UTC)
Thank you!
P. 226: 39. Can somebody post a solution for 39? I must be missing something on this one.
Re-write as:
$ \mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}] $