Line 26: Line 26:
  
 
<math>=\sqrt{\frac{2}{\pi}}\left(\left[\frac{x}{w}\sin(wx)+\frac{1}{w^2}\cos(wx)\right]_0^k
 
<math>=\sqrt{\frac{2}{\pi}}\left(\left[\frac{x}{w}\sin(wx)+\frac{1}{w^2}\cos(wx)\right]_0^k
\right)
+
\right)=
 
</math>
 
</math>
  
 +
<math>\sqrt{\frac{2}{\pi}}\left(\frac{k}{w}\sin(kw)+\frac{1}{w^2}\cos(kw)
 +
-\frac{1}{w^2}\right).</math>
  
 +
517: 5. See Bell's lecture near the top at
 +
 +
[http://www.math.purdue.edu/~bell/MA527/Lectures/lec11-10.pdf Lesson 33]
  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  

Revision as of 08:06, 11 November 2010

Homework 12 Solutions

517: 1.

$ \hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left( \int_0^1(-1)\cos(wx)\,dx+ \int_1^2(1)\cos(wx)\,dx \right)= $

$ =\sqrt{\frac{2}{\pi}}\left([-\frac{1}{w}\sin(wx)]_0^1 +[\frac{1}{w}\sin(wx)]_1^2\right)= $

$ =\sqrt{\frac{2}{\pi}}\ \frac{1}{w}\left( -(\sin(w)-0)+(\sin(2w)-\sin(w)) \right)= $

$ =\sqrt{\frac{2}{\pi}}\ \frac{\sin(2w)-2\sin(w)}{w}. $

517: 2.

$ \hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left( \int_0^k w\cos(wx)\,dx\right)= $

$ =\sqrt{\frac{2}{\pi}}\left(\left[\frac{x}{w}\sin(wx)+\frac{1}{w^2}\cos(wx)\right]_0^k \right)= $

$ \sqrt{\frac{2}{\pi}}\left(\frac{k}{w}\sin(kw)+\frac{1}{w^2}\cos(kw) -\frac{1}{w^2}\right). $

517: 5. See Bell's lecture near the top at

Lesson 33

Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal