(New page: ==Solution of Week12 Quiz Question 4== ---- a. Linearity ---- Back to Quiz Pool Back to Lab wiki) |
|||
Line 3: | Line 3: | ||
---- | ---- | ||
a. Linearity | a. Linearity | ||
+ | |||
+ | Given <math>v[n]=ax[n]+by[n]</math> | ||
+ | |||
+ | Then | ||
+ | |||
+ | <math> | ||
+ | \begin{align} | ||
+ | V(\omega ,n) &= \sum_k v[k]w[n-k]e^{-j\omega k} \\ | ||
+ | &= \sum_k (ax[k]+by[k])w[n-k]e^{-j\omega k} \\ | ||
+ | &= \sum_k ax[k]w[n-k]e^{-j\omega k}+\sum_k by[k]w[n-k]e^{-j\omega k} \\ | ||
+ | &= aX(\omega ,n)+bY(\omega ,n) | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | b. Modulation | ||
+ | |||
+ | Given <math>v[n]=x[n]e^{j\omega_0n}</math> | ||
---- | ---- |
Revision as of 12:06, 10 November 2010
Solution of Week12 Quiz Question 4
a. Linearity
Given $ v[n]=ax[n]+by[n] $
Then
$ \begin{align} V(\omega ,n) &= \sum_k v[k]w[n-k]e^{-j\omega k} \\ &= \sum_k (ax[k]+by[k])w[n-k]e^{-j\omega k} \\ &= \sum_k ax[k]w[n-k]e^{-j\omega k}+\sum_k by[k]w[n-k]e^{-j\omega k} \\ &= aX(\omega ,n)+bY(\omega ,n) \end{align} $
b. Modulation
Given $ v[n]=x[n]e^{j\omega_0n} $