(New page: ==Solution of Week12 Quiz Question 4== ---- a. Linearity ---- Back to Quiz Pool Back to Lab wiki)
 
Line 3: Line 3:
 
----
 
----
 
a. Linearity
 
a. Linearity
 +
 +
Given <math>v[n]=ax[n]+by[n]</math>
 +
 +
Then
 +
 +
<math>
 +
\begin{align}
 +
V(\omega ,n) &= \sum_k v[k]w[n-k]e^{-j\omega k} \\
 +
&= \sum_k (ax[k]+by[k])w[n-k]e^{-j\omega k} \\
 +
&= \sum_k ax[k]w[n-k]e^{-j\omega k}+\sum_k by[k]w[n-k]e^{-j\omega k} \\
 +
&= aX(\omega ,n)+bY(\omega ,n)
 +
\end{align}
 +
</math>
 +
 +
b. Modulation
 +
 +
Given <math>v[n]=x[n]e^{j\omega_0n}</math>
  
 
----
 
----

Revision as of 12:06, 10 November 2010

Solution of Week12 Quiz Question 4


a. Linearity

Given $ v[n]=ax[n]+by[n] $

Then

$ \begin{align} V(\omega ,n) &= \sum_k v[k]w[n-k]e^{-j\omega k} \\ &= \sum_k (ax[k]+by[k])w[n-k]e^{-j\omega k} \\ &= \sum_k ax[k]w[n-k]e^{-j\omega k}+\sum_k by[k]w[n-k]e^{-j\omega k} \\ &= aX(\omega ,n)+bY(\omega ,n) \end{align} $

b. Modulation

Given $ v[n]=x[n]e^{j\omega_0n} $


Back to Quiz Pool

Back to Lab wiki

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett