Line 13: Line 13:
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Properties of the Laplace Transform
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Properties of the Laplace Transform
 
|-
 
|-
| align="right" style="padding-right: 1em;" | f(s)
+
| align="right" style="padding-right: 1em;" |
 +
| f(s)
 
| F(t)
 
| F(t)
 
|-
 
|-
| align="right" style="padding-right: 1em;" | <math> af_1(s)+bf_2(s) </math>
+
| align="right" style="padding-right: 1em;" |
 +
| <math> af_1(s)+bf_2(s) </math>
 
| <math> aF_1(t)+bF_2(t) </math>
 
| <math> aF_1(t)+bF_2(t) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> f(s/a) </math>
 +
| <math> aF(at)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> f(s-a)</math>
 +
|<math> e^{at}F(t) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> e^{-as}f(s)</math>
 +
| <math> u(t-a) =
 +
\begin{cases}
 +
F(t-a)  & t>a \\
 +
0 & t<a
 +
\end{cases} </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> sf(s)-F(0) </math>
 +
| <math> F'(t)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> s^2f(s)-sF(0)-F'(0) </math>
 +
| <math> F''(t)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> s^{n}f(s)-s^{n-1}F(0)-s^{n-2}F'(0)-...-F^{n-1}(0)</math>
 +
| <math> F^{(n)}(t)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> f'(s)</math>
 +
| <math> -tF(t)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math>f''(s) </math>
 +
| <math> t^2F(t) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> f^{(n)}(s)</math>
 +
| <math> (-1)^{(ntn)}F(t)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math> \frac{f(s)}s</math>
 +
| <math> \int_{0}^{t} F(u) du </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | please continue
 +
| place formula here
 +
|-<math> af_1(s)+bf_2(s)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | please continue
 +
| place formula here
 +
|-<math> af_1(s)+bf_2(s)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | please continue
 +
| place formula here
 +
|-<math> af_1(s)+bf_2(s)</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | please continue
 +
| place formula here
 
|-<math> af_1(s)+bf_2(s)</math>
 
|-<math> af_1(s)+bf_2(s)</math>
 
|-
 
|-
Line 36: Line 97:
 
|-<math> af_1(s)+bf_2(s)</math>
 
|-<math> af_1(s)+bf_2(s)</math>
 
|-
 
|-
 +
 
! colspan="4" style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" | Laplace Transform Pairs  
 
! colspan="4" style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" | Laplace Transform Pairs  
 
!  
 
!  

Revision as of 15:11, 5 November 2010

Laplace Transform Pairs and Properties
Definition
Laplace Transform $ X(s)=\int_{-\infty}^\infty x(t) e^{-st}dt, \ s\in {\mathbb C} \ $
Inverse Laplace Transform add formula here
Properties of the Laplace Transform
f(s) F(t)
$ af_1(s)+bf_2(s) $ $ aF_1(t)+bF_2(t) $
$ f(s/a) $ $ aF(at) $
$ f(s-a) $ $ e^{at}F(t) $
$ e^{-as}f(s) $ $ u(t-a) = \begin{cases} F(t-a) & t>a \\ 0 & t<a \end{cases} $
$ sf(s)-F(0) $ $ F'(t) $
$ s^2f(s)-sF(0)-F'(0) $ $ F''(t) $
$ s^{n}f(s)-s^{n-1}F(0)-s^{n-2}F'(0)-...-F^{n-1}(0) $ $ F^{(n)}(t) $
$ f'(s) $ $ -tF(t) $
$ f''(s) $ $ t^2F(t) $
$ f^{(n)}(s) $ $ (-1)^{(ntn)}F(t) $
$ \frac{f(s)}s $ $ \int_{0}^{t} F(u) du $
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
Laplace Transform Pairs
notes Signal Laplace Transform ROC
unit impulse/Dirac delta $ \,\!\delta(t) $ 1 $ \text{All}\, s \in {\mathbb C} $
unit step function $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ \text{All}\,\, s\in {\mathbb C} $
$ \,\cos( \omega_0 t)u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \, \sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,e^{-\alpha t}\cos( \omega_0 t) u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \, e^{-\alpha t}\sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett