Line 75: Line 75:
  
 
Answer: I cannot figure out how to solve 17 yet, but for 7, you can get down to
 
Answer: I cannot figure out how to solve 17 yet, but for 7, you can get down to
 +
something like
  
<math>\int_a^b  Sin(nx) *Sin(mx) \, \mathrm{d}x</math>.
+
<math>\int_a^b  Sin(nx) *Sin(mx) \, \mathrm{d}x.</math>
 
+
  
 +
(And that integral is calculated at the bottom of page 205.)
  
 
p. 209, #17
 
p. 209, #17

Revision as of 07:19, 24 October 2010

Homework 9 Collaboration Area

Here are some

Hints from Bell about Legendre Polynomials.

Question Page 597, Problem 5:

What do we do with the x in the first term of this problem?

Answer: When you do a Laplace transform wrt t, the x floats along like when you do d/dt(x*t). Then you can use formula 4 in section 1.5 to solve the 1st order ODE.

Question Page 209 Problem 7:

Where does the $ \pi $ come from in this solution?

Answer: When you do the positive lambda case, you get A = 0 and let B = 1 => Sin(5*mu) = 0. If mu = m*pi/5, this equation is true. I let B=1 because we cannot have both A and B = 0.

Question: Page 209, Problem 17: For the given equation, shouldn't p=1, q=16, r=1? These values differ from the textbook's values.

Answer: If that were the case, then the equation would be

[py']' + (q+ lambda r) y =

[1 y']' + (16 + lambda) y =

y" + (16 + lambda) y = 0

and it ain't. You need to use problem 6 in the same section to get p,q, and r.

Question: Why isn't q=pg=16*exp(8x)?

Answer: Here is the idea of problem 6. We have the equation

$ y'' + 8 y' + (\lambda + 16)y=0. $

Multiply that equation by p(x). You get

$ py'' + 8p y' + (\lambda p+ 16p)y=0. $

If this were in Sturm-Liouville form, it would look like

$ [py']'+ (q + \lambda r) y = $

$ py'' + p'y' + (q+ \lambda r) y = 0. $

By comparing those two, we see that we need

$ p'=8p $

and q=16p and r=p. Solving the ODE for p yields

$ p(x)=e^{8x}. $

(We can take the arbitrary constant in the solution to be a convenient value because we just want one p(x) that has this property.)

Finally, we get

$ p(x)=e^{8x},\quad q(x)=16e^{8x},\quad\text{and }r(x)=e^{8x}. $

Hmmm. I see what you mean. I think the answer in the back of the book is wrong.--Steve Bell 12:07, 23 October 2010 (UTC)

p. 216, #s 1 and 3:

I am using the hints given, but I'm still not sure I'm doing this correctly. For example, for #1, I've calculated c4 as c4 = [((2*4)+1)/2] * integral from -1 to 1 of (7x^4-6x^2)(P_4(x)) dx, where P_4= (1/8)(35x^4-30x^2+3), and then I would do something similar for C3, C2, C1, and C0. But if I find C4 this way, I'll get an answer where there's an x^9 term, and I don't see how to get an answer in terms for P_4 and P_1, like there is in the back of the book.

p. 209 #7 & #17:

To verify orthogonality, do you just use Theorem , or do you have to do the integral?

Answer: The theorem says the eigenfunctions are orthogonal. However, to VERIFY that, you'll have to compute the integrals.

Answer: I cannot figure out how to solve 17 yet, but for 7, you can get down to something like

$ \int_a^b Sin(nx) *Sin(mx) \, \mathrm{d}x. $

(And that integral is calculated at the bottom of page 205.)

p. 209, #17

Answer:

You can solve for lambda in a way similar to the way Prof. Bell did it at the beginning of class on 10/20/10. From the original problem you get: r^2+8r=16 = -lamda. Here r = sqrt(-lambda)-4. As normal, the lambda >0 case gives you non-zero solutions. Since our root is complex of the form -4 plus/minus i*sqrt(lambda), where mu = sqrt(lambda). We can solve for lambda like in 7 by using the general form of:

y = exp(-4*x)*(A*cos(mu*x)+B*sin(mu*x)). Plug in boundary conditions and Ta-Da. Oh and I conveniently pulled 'i' into B so I wouldn't have to worry about it. Seemed to turn out ok...


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn