(→Properties) |
(→Properties) |
||
Line 37: | Line 37: | ||
Time: <math>CTFT[x(t-T)] = X(\omega)e^{-j \omega T}</math> | Time: <math>CTFT[x(t-T)] = X(\omega)e^{-j \omega T}</math> | ||
− | Frequency: <math>CTFT[x(t)e^{j W t} = X(\omega - W)</math> | + | Frequency: <math>CTFT[x(t)e^{j W t}] = X(\omega - W)</math> |
'''Time Scaling''': | '''Time Scaling''': | ||
− | <math>CTFT[x(\alpha t)] = \frac{1}{|\alpha |} = X(\frac{\omega}{\alpha}) | + | <math>CTFT[x(\alpha t)] = \frac{1}{|\alpha |} = X(\frac{\omega}{\alpha})</math> |
+ | |||
+ | '''Conjugate Symmetry''': | ||
+ | |||
+ | Assume x(t) is real, | ||
+ | |||
+ | <math>CTFT[x(t)] = X(\omega)</math> | ||
+ | |||
+ | Then <math>X(\omega) = X^*(\omega)</math> | ||
+ | |||
+ | '''Time Domain Multiplication/Convolution''': | ||
+ | |||
+ | <math>CTFT[x(t)\cdot y(t)] = \frac{1}{2\pi}X(\omega)*Y(w)</math> | ||
+ | |||
+ | <math>CTFT[x(t)*y(t)] = X(\omega)Y(\omega)</math> |
Revision as of 06:42, 23 October 2010
A work in progress.
The Continuous Time Fourier Transform (CTFT)
CTFT:
$ X(\omega) = \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt $
Inverse CTFT:
$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \! X(\omega)e^{j \omega t} dw $
Example:
Let $ x(t) = \delta (t) $
$ \begin{align} X(\omega) &= \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt \\ &= \int_{-\infty}^{\infty} \! \delta (t)e^{-j \omega t} dt \\ &= 1\end{align} $
Therefore, CTFT of $ \delta (t) = 1 $
Properties
Linearity:
$ CTFT[x(t)] = X(\omega) $
Then $ CTFT[\alpha x1(t) + \beta x2(t)] = \alpha X1(\omega) + \beta X2(\omega) $
Time Reversal:
$ CTFT[x(t)] = X(\omega) $
Then $ CTFT[x(-t)] = X(-\omega) $
Time/Frequency Shift:
Time: $ CTFT[x(t-T)] = X(\omega)e^{-j \omega T} $
Frequency: $ CTFT[x(t)e^{j W t}] = X(\omega - W) $
Time Scaling:
$ CTFT[x(\alpha t)] = \frac{1}{|\alpha |} = X(\frac{\omega}{\alpha}) $
Conjugate Symmetry:
Assume x(t) is real,
$ CTFT[x(t)] = X(\omega) $
Then $ X(\omega) = X^*(\omega) $
Time Domain Multiplication/Convolution:
$ CTFT[x(t)\cdot y(t)] = \frac{1}{2\pi}X(\omega)*Y(w) $
$ CTFT[x(t)*y(t)] = X(\omega)Y(\omega) $