m (→The Continuous Time Fourier Transform (CTFT)) |
|||
Line 12: | Line 12: | ||
'''Example:''' | '''Example:''' | ||
− | Let <math>x(t) = | + | Let <math>x(t) = \delta (t)</math> |
− | <math>\begin{align}X(\omega) = \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt \\ | + | <math> |
− | &= \int_{-\infty}^{\infty} \! | + | \begin{align} |
− | + | X(\omega) &= \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt \\ &= \int_{-\infty}^{\infty} \! \delta (t)e^{-j \omega t} dt \\ &= 1\end{align}</math> | |
− | &= | + | |
− | + | Therefore, CTFT of <math>\delta (t) = 1</math> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
== Properties == | == Properties == |
Revision as of 05:46, 23 October 2010
A work in progress.
The Continuous Time Fourier Transform (CTFT)
CTFT:
$ X(\omega) = \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt $
Inverse CTFT:
$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \! X(\omega)e^{j \omega t} dw $
Example:
Let $ x(t) = \delta (t) $
$ \begin{align} X(\omega) &= \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt \\ &= \int_{-\infty}^{\infty} \! \delta (t)e^{-j \omega t} dt \\ &= 1\end{align} $
Therefore, CTFT of $ \delta (t) = 1 $