(New page: Using Binomial Theorem, <math>(a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n</math>. We have <math>\binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n</math>)
 
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
=[[HW1_MA453Fall2008walther|HW1]], Chapter 0, Problem 21, [[MA453]], Fall 2008, [[user:walther|Prof. Walther]]=
 +
==Problem Statement==
 +
''Could somebody please state the problem''
 +
 +
----
 +
==Discussion==
 +
 
Using Binomial Theorem, <math>(a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n</math>.
 
Using Binomial Theorem, <math>(a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n</math>.
 +
 
We have <math>\binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n</math>
 
We have <math>\binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n</math>
 +
 +
----
 +
== Using Induction ==
 +
 +
'''Base case:''' <br>
 +
n=0: <math>2^0=1</math> Subsets with 0 elements: {∅} <br>
 +
n=1: <math>2^1=2</math> Subsets with 1 elements: {∅}, {1}
 +
 +
So we can assume a set ''S'' with ''n'' elements has <math>2^n</math> subsets.
 +
 +
n+1: <math>2^(n+1) = 2^1 + 2^n = 2*2^n = 2^(n+1)</math>
 +
 +
-Jesse Straeter
 +
 +
----
 +
[[HW1_MA453Fall2008walther|Back to HW1]]
 +
 +
[[Main_Page_MA453Fall2008walther|Back to MA453 Fall 2008 Prof. Walther]]

Latest revision as of 15:48, 22 October 2010

HW1, Chapter 0, Problem 21, MA453, Fall 2008, Prof. Walther

Problem Statement

Could somebody please state the problem


Discussion

Using Binomial Theorem, $ (a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n $.

We have $ \binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n $


Using Induction

Base case:
n=0: $ 2^0=1 $ Subsets with 0 elements: {∅}
n=1: $ 2^1=2 $ Subsets with 1 elements: {∅}, {1}

So we can assume a set S with n elements has $ 2^n $ subsets.

n+1: $ 2^(n+1) = 2^1 + 2^n = 2*2^n = 2^(n+1) $

-Jesse Straeter


Back to HW1

Back to MA453 Fall 2008 Prof. Walther

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010