Line 1: Line 1:
 +
=[[HW1_MA453Fall2008walther|HW1]] Discussion, [[MA453]], Fall 2008, [[user:walther|Prof. Walther]]=
 +
==Problem Statement==
 +
''Could somebody please state the problem''
 +
 +
----
 +
==Discussion==
 +
 
Using Binomial Theorem, <math>(a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n</math>.
 
Using Binomial Theorem, <math>(a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n</math>.
  
 
We have <math>\binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n</math>
 
We have <math>\binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n</math>
  
 
+
----
 
== Using Induction ==
 
== Using Induction ==
  
Line 17: Line 24:
  
 
----
 
----
 +
[[HW1_MA453Fall2008walther|Back to HW1]]
 +
 +
[[Main_Page_MA453Fall2008walther|Back to MA453 Fall 2008 Prof. Walther]]

Revision as of 15:46, 22 October 2010

HW1 Discussion, MA453, Fall 2008, Prof. Walther

Problem Statement

Could somebody please state the problem


Discussion

Using Binomial Theorem, $ (a+b)^n=\binom{n}{0}a^n+ \binom n 1 a^{n-1} b+...+\binom{n}{n}b^n $.

We have $ \binom{n}{0}+ \binom{n}{1}+...+\binom{n}{n}=(1+1)^n=2^n $


Using Induction

Base case:
n=0: $ 2^0=1 $ Subsets with 0 elements: {∅}
n=1: $ 2^1=2 $ Subsets with 1 elements: {∅}, {1}

So we can assume a set S with n elements has $ 2^n $ subsets.

n+1: $ 2^(n+1) = 2^1 + 2^n = 2*2^n = 2^(n+1) $

-Jesse Straeter


Back to HW1

Back to MA453 Fall 2008 Prof. Walther

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett