(New page: If you name the verticies of the four rectangles A, B, C, and D. The rectangle would appear thus: Image:R0.png The rectangle would have four transformations: Rotation of 0º (or 360...)
 
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
If you name the verticies of the four rectangles A, B, C, and D.
+
=[[HW2_MA453Fall2008walther|HW2]], Chapter 1 problem 13, Discussion, [[MA453]], [[user:walther|Prof. Walther]]=
 +
 
 +
Problem Statement:
 +
 
 +
'''Can somebody please write the problem statement?'''
 +
 
 +
-------
 +
If you name the vertices of the four rectangles A, B, C, and D.
  
 
The rectangle would appear thus:
 
The rectangle would appear thus:
Line 6: Line 13:
 
The rectangle would have four transformations:
 
The rectangle would have four transformations:
  
Rotation of 0º (or 360º) : <math>R_0</math>
+
Rotation of 0º (or 360º) : <math>R_{0}</math>
  
 
[[Image:R0_MA453Fall2008walther.png]]
 
[[Image:R0_MA453Fall2008walther.png]]
  
  
Rotation of 180º: <math>R_180</math>
+
Rotation of 180º: <math>R_{180}</math>
  
 
[[Image:R180_MA453Fall2008walther.png]]
 
[[Image:R180_MA453Fall2008walther.png]]
  
  
Flip About a Horizontal Axis: H
+
Flip About a Horizontal Axis: <math>H</math>
  
 
[[Image:H_MA453Fall2008walther.png]]
 
[[Image:H_MA453Fall2008walther.png]]
  
  
Flip About a Vertical Axis: V
+
Flip About a Vertical Axis: <math>V</math>
  
 
[[Image:V_MA453Fall2008walther.png]]
 
[[Image:V_MA453Fall2008walther.png]]
  
 
From this, the Cayley table can easily be constructed.
 
From this, the Cayley table can easily be constructed.
 +
----
 +
[[HW2_MA453Fall2008walther|Back to HW2]]
 +
 +
[[Main_Page_MA453Fall2008walther|Back to MA453 Fall 2008 Prof. Walther]]

Latest revision as of 15:31, 22 October 2010

HW2, Chapter 1 problem 13, Discussion, MA453, Prof. Walther

Problem Statement:

Can somebody please write the problem statement?


If you name the vertices of the four rectangles A, B, C, and D.

The rectangle would appear thus: R0 MA453Fall2008walther.png

The rectangle would have four transformations:

Rotation of 0º (or 360º) : $ R_{0} $

R0 MA453Fall2008walther.png


Rotation of 180º: $ R_{180} $

R180 MA453Fall2008walther.png


Flip About a Horizontal Axis: $ H $

H MA453Fall2008walther.png


Flip About a Vertical Axis: $ V $

V MA453Fall2008walther.png

From this, the Cayley table can easily be constructed.


Back to HW2

Back to MA453 Fall 2008 Prof. Walther

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett