(New page with lecture material) |
|||
Line 1: | Line 1: | ||
− | Review of iterative solutions to partial differential equations. | + | =Review of iterative solutions to partial differential equations.= |
− | + | It may be useful to paste some material from [[Lecture 28 - Final lecture_Old Kiwi| here]] | |
<center><math> | <center><math> | ||
Line 7: | Line 7: | ||
<center><math> | <center><math> | ||
\frac{x(t+\Delta t)-x(t)}{\Delta t}=2</math></center> | \frac{x(t+\Delta t)-x(t)}{\Delta t}=2</math></center> | ||
− | <center><math> | + | <center><math> x(t+\Delta t)= x(t)+2 \Delta t \ </math></center> |
− | x(t+\Delta t)=x(t)+\Delta | + | |
Now pick an initial t, say <math>t=0</math>. Assume a boundary condition, <math>x(0)=7</math>. | Now pick an initial t, say <math>t=0</math>. Assume a boundary condition, <math>x(0)=7</math>. | ||
Then <math>x(0)=x_{0}</math>, so <math>x_{0}=7</math>. | Then <math>x(0)=x_{0}</math>, so <math>x_{0}=7</math>. | ||
− | Then <math>x(\Delta t)=x_{1}</math>, so <math>x_{1}=7+\Delta t2=7.2</math> (We pick <math>\Delta t=0.2</math>) | + | Then <math>x(\Delta t)=x_{1}</math>, so <math>x_{1}=7+\Delta t2=7.2 </math> (We pick <math>\Delta t=0.2</math>) |
Then <math>x(2\Delta t)=x_{2}</math>, so <math>x_{2}=7.2+\Delta t2=7.4</math> | Then <math>x(2\Delta t)=x_{2}</math>, so <math>x_{2}=7.2+\Delta t2=7.4</math> | ||
[Plot of solution] | [Plot of solution] | ||
+ | ---- |
Latest revision as of 11:19, 22 October 2010
Review of iterative solutions to partial differential equations.
It may be useful to paste some material from here
Now pick an initial t, say $ t=0 $. Assume a boundary condition, $ x(0)=7 $.
Then $ x(0)=x_{0} $, so $ x_{0}=7 $.
Then $ x(\Delta t)=x_{1} $, so $ x_{1}=7+\Delta t2=7.2 $ (We pick $ \Delta t=0.2 $)
Then $ x(2\Delta t)=x_{2} $, so $ x_{2}=7.2+\Delta t2=7.4 $
[Plot of solution]