Line 1: Line 1:
 
{|
 
{|
! colspan="2" style="background:  #e4bc7e; font-size: 120%;" |
 
 
|-
 
|-
! colspan="2" style="background: #eee;" | Properties of Probability Functions
+
! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 120%;" colspan="2" |  
 
|-
 
|-
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) || <math>\,P(A^c) = 1 - P(A)\,</math>
+
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Properties of Probability Functions
|-
+
| align="right" style="padding-right: 1em;" | The intersection of two independent events A and B || <math>\,P(A \mbox{ and }B) =  P(A \cap B) = P(A) P(B)\,</math>
+
 
|-
 
|-
| align="right" style="padding-right: 1em;" | The union of two events A and B (i.e. either A or B occurring) || <math>\,P(A \mbox{ or } B) = P(A) + P(B) - P(A \mbox{ and } B)\,</math>
+
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring)  
 +
| <math>\,P(A^c) = 1 - P(A)\,</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | The union of two mutually exclusive events A and B || <math>\,P(A \mbox{ or } B) =  P(A \cup B)= P(A) + P(B)\,</math>
+
| align="right" style="padding-right: 1em;" | The intersection of two independent events A and B  
 +
| <math>\,P(A \mbox{ and }B) =  P(A \cap B) = P(A) P(B)\,</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Event A occurs given that event B has occurred || <math>\,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\,</math>
+
| align="right" style="padding-right: 1em;" | The union of two events A and B (i.e. either A or B occurring)
 +
| <math>\,P(A \mbox{ or } B) = P(A) + P(B) - P(A \mbox{ and } B)\,</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Total Probability Law || <math>\,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\,</math>  
+
| align="right" style="padding-right: 1em;" | The union of two mutually exclusive events A and B
 +
| <math>\,P(A \mbox{ or } B) =  P(A \cup B)= P(A) + P(B)\,</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Event A occurs given that event B has occurred
 +
| <math>\,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\,</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Total Probability Law  
 +
| <math>\,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\,</math>  
 
  <math> \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }.</math>
 
  <math> \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }.</math>
 +
 +
|-
 +
| align="right" style="padding-right: 1em;" | Bayes Theorem
 +
| <math>\,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }.</math>
 +
|}
 +
 +
{|
 +
|-
 +
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | Expectation and Variance of Random Variables
 +
|-
 +
| align="right" style="padding-right: 1em;" | Binomial random variable with parameters n and p
 +
| <math>\,E[X] = np,\ \ Var(X) = np(1-p)\,</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Poisson random variable with parameter <math>\lambda</math>
 +
| <math>\,E[X] = \lambda,\ \ Var(X) = \lambda\,</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Geometric random variable with parameter p
 +
| <math>\,E[X] = \frac{1}{p},\ \ Var(X) = \frac{1-p}{p^2}\,</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Bayes Theorem || <math>\,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }.</math>
+
| align="right" style="padding-right: 1em;" |  
 +
| <math>\sin\left(\omega _0 n\right) u[n] \ </math>
 +
|
 +
| <math>\frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right)</math>
 
|}
 
|}
 +
 
----
 
----
[[Collective_Table_of_Formulas|Back to Collective Table]]  
+
 
 +
[[Collective Table of Formulas|Back to Collective Table]]  
 +
 
 
[[Category:Formulas]]
 
[[Category:Formulas]]

Revision as of 10:24, 22 October 2010

Properties of Probability Functions
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
The intersection of two independent events A and B $ \,P(A \mbox{ and }B) = P(A \cap B) = P(A) P(B)\, $
The union of two events A and B (i.e. either A or B occurring) $ \,P(A \mbox{ or } B) = P(A) + P(B) - P(A \mbox{ and } B)\, $
The union of two mutually exclusive events A and B $ \,P(A \mbox{ or } B) = P(A \cup B)= P(A) + P(B)\, $
Event A occurs given that event B has occurred $ \,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\, $
Total Probability Law $ \,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\, $
$  \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }. $
Bayes Theorem $ \,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }. $
Expectation and Variance of Random Variables
Binomial random variable with parameters n and p $ \,E[X] = np,\ \ Var(X) = np(1-p)\, $
Poisson random variable with parameter $ \lambda $ $ \,E[X] = \lambda,\ \ Var(X) = \lambda\, $
Geometric random variable with parameter p $ \,E[X] = \frac{1}{p},\ \ Var(X) = \frac{1-p}{p^2}\, $
$ \sin\left(\omega _0 n\right) u[n] \ $ $ \frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right) $

Back to Collective Table

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010