Line 2: | Line 2: | ||
! colspan="2" style="background: #e4bc7e; font-size: 120%;" | | ! colspan="2" style="background: #e4bc7e; font-size: 120%;" | | ||
|- | |- | ||
− | ! colspan="2" style="background: #eee;" | | + | ! colspan="2" style="background: #eee;" | Properties of Probability Functions |
|- | |- | ||
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) || <math>\,P(A^c) = 1 - P(A)\,</math> | | align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) || <math>\,P(A^c) = 1 - P(A)\,</math> |
Revision as of 08:36, 22 October 2010
Properties of Probability Functions | |
---|---|
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |
The intersection of two independent events A and B | $ \,P(A \mbox{ and }B) = P(A \cap B) = P(A) P(B)\, $ |
The union of two events A and B (i.e. either A or B occurring) | $ \,P(A \mbox{ or } B) = P(A) + P(B) - P(A \mbox{ and } B)\, $ |
The union of two mutually exclusive events A and B | $ \,P(A \mbox{ or } B) = P(A \cup B)= P(A) + P(B)\, $ |
Event A occurs given that event B has occurred | $ \,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\, $ |
Total Probability Law | $ \,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\, $
$ \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }. $
|
Bayes Theorem | $ \,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }. $ |