Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{| | {| | ||
− | ! colspan="2" style="background: #e4bc7e; font-size: 110%;" | | + | ! colspan="2" style="background: #e4bc7e; font-size: 110%;" | |
|- | |- | ||
! colspan="2" style="background: #eee;" | Property of Probability Functions | ! colspan="2" style="background: #eee;" | Property of Probability Functions | ||
Line 20: | Line 11: | ||
|- | |- | ||
| align="right" style="padding-right: 1em;" | The union of two mutually exclusive events A and B || <math>\,P(A \mbox{ or } B) = P(A \cup B)= P(A) + P(B)\,</math> | | align="right" style="padding-right: 1em;" | The union of two mutually exclusive events A and B || <math>\,P(A \mbox{ or } B) = P(A \cup B)= P(A) + P(B)\,</math> | ||
− | |||
− | |||
|- | |- | ||
− | + | | align="right" style="padding-right: 1em;" | Event A occurs given that event B has occurred || <math>\,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\,</math> | |
− | + | ||
− | | align="right" style="padding-right: 1em;" | | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
|} | |} | ||
---- | ---- | ||
[[Collective_Table_of_Formulas|Back to Collective Table]] | [[Collective_Table_of_Formulas|Back to Collective Table]] | ||
[[Category:Formulas]] | [[Category:Formulas]] |
Revision as of 07:57, 22 October 2010
Property of Probability Functions | |
---|---|
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |
The intersection of two independent events A and B | $ \,P(A \mbox{ and }B) = P(A \cap B) = P(A) P(B)\, $ |
The union of two events A and B (i.e. either A or B occurring) | $ \,P(A \mbox{ or } B) = P(A) + P(B) - P(A \mbox{ and } B)\, $ |
The union of two mutually exclusive events A and B | $ \,P(A \mbox{ or } B) = P(A \cup B)= P(A) + P(B)\, $ |
Event A occurs given that event B has occurred | $ \,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\, $ |