Line 52: Line 52:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |Half-angle for cosine
 
| align="right" style="padding-right: 1em;" |Half-angle for cosine
|<math>  \sin \frac{\theta}{2} = \pm \sqrt{ \frac{1+\cos  \theta}{2} } \ </math>  
+
|<math>  \cos \frac{\theta}{2} = \pm \sqrt{ \frac{1+\cos  \theta}{2} } \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |Half-angle for tangent
 +
|<math>  \tan \frac{\theta}{2} = \csc \theta - \cot \theta \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |Half-angle for tangent
 +
|<math>  \tan \frac{\theta}{2} =\pm\sqrt{\frac{1-\cos \theta}{ 1+\cos \theta }} \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |Half-angle for tangent
 +
|<math>  \tan \frac{\theta}{2} =\frac{\sin  \theta}{ 1+\cos \theta } \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |Half-angle for tangent
 +
|<math>  \tan \frac{\theta}{2} =\frac{1-\cos  \theta}{ \sin \theta } \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Half-angle for cotangent
 +
|  <math>\cot \frac{\theta}{2} = \csc \theta + \cot \theta </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Half-angle for cotangent
 +
|  <math>\cot \frac{\theta}{2} = \frac{1 + \cos \theta}{\sin \theta} </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Half-angle for cotangent
 +
|  <math>\cot \frac{\theta}{2} = \pm \sqrt{1 + \cos \theta \over 1 - \cos \theta} </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Half-angle for cotangent
 +
|  <math>\cot \frac{\theta}{2} = \frac{\sin \theta}{1 - \cos \theta}  </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | please continue
 
| align="right" style="padding-right: 1em;" | please continue

Revision as of 07:35, 22 October 2010

Trigonometric Identities
Basic Definitions
Definition of tangent $ \tan \theta = \frac{\sin \theta}{\cos\theta} $ credit
Definition of cotangent $ \cot \theta = \frac{\cos \theta}{\sin\theta} \ $ credit
Definition of secant $ \sec \theta = \frac{1}{\cos \theta} \ $
Definition of cosecant $ \csc \theta = \frac{1}{\sin \theta} \ $
Definition of versed sine (versine) $ \text{ver } \theta = 1- \cos \theta \ $
Definition of versed cosine (versine) $ \text{vercosine } \theta = 1+ \cos \theta \ $
please continue place formula here
Pythagorean identity and other related identities
Pythagorean identity $ \cos^2 \theta+\sin^2 \theta =1 \ $
$ \sin^2 \theta = 1-\cos^2 \theta \ $
$ \cos^2 \theta = 1-\sin^2 \theta \ $
$ \sec^2 \theta = 1+\tan^2 \theta \ $
$ \csc^2 \theta = 1+\cot^2 \theta \ $
please continue place formula here
Half-Angle Formulas
Half-angle for sine $ \sin \frac{\theta}{2} = \pm \sqrt{ \frac{1-\cos \theta}{2} } \ $
Half-angle for cosine $ \cos \frac{\theta}{2} = \pm \sqrt{ \frac{1+\cos \theta}{2} } \ $
Half-angle for tangent $ \tan \frac{\theta}{2} = \csc \theta - \cot \theta \ $
Half-angle for tangent $ \tan \frac{\theta}{2} =\pm\sqrt{\frac{1-\cos \theta}{ 1+\cos \theta }} \ $
Half-angle for tangent $ \tan \frac{\theta}{2} =\frac{\sin \theta}{ 1+\cos \theta } \ $
Half-angle for tangent $ \tan \frac{\theta}{2} =\frac{1-\cos \theta}{ \sin \theta } \ $
Half-angle for cotangent $ \cot \frac{\theta}{2} = \csc \theta + \cot \theta $
Half-angle for cotangent $ \cot \frac{\theta}{2} = \frac{1 + \cos \theta}{\sin \theta} $
Half-angle for cotangent $ \cot \frac{\theta}{2} = \pm \sqrt{1 + \cos \theta \over 1 - \cos \theta} $
Half-angle for cotangent $ \cot \frac{\theta}{2} = \frac{\sin \theta}{1 - \cos \theta} $
please continue place formula here
Angle sum and differences identities
Angle sum for sine $ \sin \left( \theta\pm \alpha \right)=\sin \theta \cos \alpha \pm \cos \theta \sin \alpha $
please continue place formula here

Back to Collective Table

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva