Line 1: Line 1:
 
{|
 
{|
 
|-
 
|-
! colspan="2" style="background: #e4bc7e; font-size: 110%;" | Basic Identities
+
! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Trigonometric Identities
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Basic Definitions
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |Definition of tangent  
 
| align="right" style="padding-right: 1em;" |Definition of tangent  
Line 9: Line 11:
 
| <math>  \cot \theta = \frac{\cos \theta}{\sin\theta} </math>  [[User:Kumar51formulas|credit]]
 
| <math>  \cot \theta = \frac{\cos \theta}{\sin\theta} </math>  [[User:Kumar51formulas|credit]]
 
|-
 
|-
| align="right" style="padding-right: 1em;" | place note here
+
| align="right" style="padding-right: 1em;" | Definition of secant
| place formula here
+
| <math>\sec \theta = \frac{1}{\cos \theta}</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Definition of cosecant
 +
| <math>\csc \theta = \frac{1}{\sin \theta}</math>
 +
|-
 +
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Pythagorean identity and other related identities
 +
|-
 +
| align="right" style="padding-right: 1em;" | Pythagorean identity
 +
| <math>\cos^2 \theta+\sin^2 \theta =1</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | place note here  
+
| align="right" style="padding-right: 1em;" | write name here
 
| place formula here
 
| place formula here
 
|}
 
|}

Revision as of 07:02, 22 October 2010

Trigonometric Identities
Basic Definitions
Definition of tangent $ \tan \theta = \frac{\sin \theta}{\cos\theta} $ credit
Definition of cotangent $ \cot \theta = \frac{\cos \theta}{\sin\theta} $ credit
Definition of secant $ \sec \theta = \frac{1}{\cos \theta} $
Definition of cosecant $ \csc \theta = \frac{1}{\sin \theta} $
Pythagorean identity and other related identities
Pythagorean identity $ \cos^2 \theta+\sin^2 \theta =1 $
write name here place formula here

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett