(One intermediate revision by the same user not shown)
Line 1: Line 1:
rhea edit
 
 
 
----
 
----
 
== Solution to Q3 of Week 9 Quiz Pool ==
 
== Solution to Q3 of Week 9 Quiz Pool ==
Line 22: Line 20:
 
b. Compute the output when x[n] = u[n].  
 
b. Compute the output when x[n] = u[n].  
  
y[n] = h[n] * x[n] <br/>
+
<math>
y[n] = h[n] * u[n] <br/>
+
\begin{align}
y[n] = <math>0.5^nu[n] + 2(0.5)^{n-1}u[n-1]</math> * u[n] <br/>
+
y[n] &= h[n] * x[n] \\
y[n] = <math>(0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * u[n]) </math><br/>
+
y[n] &= h[n] * u[n] \\
 +
y[n] &= 0.5^nu[n] + 2(0.5)^{n-1}u[n-1] * u[n] \\
 +
y[n] &= (0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * u[n]) \\
 +
\end{align}
 +
</math>
  
 
Splitting the expression into two parts, we evaluate them individually, <br/>
 
Splitting the expression into two parts, we evaluate them individually, <br/>
Line 63: Line 65:
 
c. Compute the output when x[n] = <math>0.25^n</math>u[n].  
 
c. Compute the output when x[n] = <math>0.25^n</math>u[n].  
  
y[n] = h[n] * x[n] <br/>
+
<math>
y[n] = h[n] * u[n] <br/>
+
\begin{align}
y[n] = <math>0.5^nu[n] + 2(0.5)^{n-1}u[n-1]</math> * 0.25^nu[n] <br/>
+
y[n] &= h[n] * x[n] \\
y[n] = <math>(0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * 0.25^nu[n]) </math><br/>
+
y[n] &= h[n] * u[n] \\
 +
y[n] &= 0.5^nu[n] + 2(0.5)^{n-1}u[n-1] * 0.25^nu[n] \\
 +
y[n] &= (0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * 0.25^nu[n]) \\
 +
\end{align}
 +
</math>
  
 
Splitting the expression into two parts, we evaluate them individually, <br/>
 
Splitting the expression into two parts, we evaluate them individually, <br/>
Line 75: Line 81:
 
\begin{align}
 
\begin{align}
 
0.5^nu[n] * 0.25^nu[n] &=  \sum_{k=-\infty}^{\infty} 0.5^k u[k] 0.25^{n-k}u[n - k] \\
 
0.5^nu[n] * 0.25^nu[n] &=  \sum_{k=-\infty}^{\infty} 0.5^k u[k] 0.25^{n-k}u[n - k] \\
&= \sum_{k=0}^{\infty} \frac{0.5^k}{0.25^k} 0.25^nu[n - k] \\
+
&= \sum_{k=0}^{\infty} \left ( \frac{0.5}{0.25} \right )^k 0.25^nu[n - k] \\
&= \sum_{k=0}^{n} \frac{0.5^k}{0.25^k} 0.25^nu[n] \\
+
&= \sum_{k=0}^{n} 2^k 0.25^nu[n] \\
&= 0.25^nu[n] \sum_{k=0}^{n} \frac{0.5^k}{0.25^k} \\
+
&= 0.25^nu[n] \sum_{k=0}^{n} 2^k  \\
&= 0.25^nu[n] \frac{1-\frac{(0.5)^{n+1}}{(0.25)^{n+1}}}{1-\frac{0.5}{0.25}} \\
+
 
&= 0.25^nu[n] \frac{1-2^{n+1}}{1-2} \\
 
&= 0.25^nu[n] \frac{1-2^{n+1}}{1-2} \\
 
&= 0.25^n(2^{n+1} - 1)u[n]  \\
 
&= 0.25^n(2^{n+1} - 1)u[n]  \\

Latest revision as of 16:21, 20 October 2010


Solution to Q3 of Week 9 Quiz Pool


y[n] = x[n] + 2x[n-1] + 0.5y[n-1]

a. Compute the impulse response h[n] of the system.

$ y[n] = h[n]\text{ when }x[n] = \delta[n] $
$ h[-1] = 0 $
$ h[0] = 1 $
$ h[1] = 2 + 0.5 $
$ h[2] = 0.5(2 + 0.5) $
$ h[3] = 0.5(0.5(2 + 0.5)) $
...
$ h[n] = (0.5 + 0.5) + (0.5 + 2) + (0.5^2 + 2(0.5)^2) + (0.5^3 + 2(0.5)^3) + ... $
So
$ h[n] = 0.5^nu[n] + 2(0.5)^{n-1}u[n-1] $

b. Compute the output when x[n] = u[n].

$ \begin{align} y[n] &= h[n] * x[n] \\ y[n] &= h[n] * u[n] \\ y[n] &= 0.5^nu[n] + 2(0.5)^{n-1}u[n-1] * u[n] \\ y[n] &= (0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * u[n]) \\ \end{align} $

Splitting the expression into two parts, we evaluate them individually,
Using the definition of convolution,
$ (f * g)[n]\ \stackrel{\mathrm{def}}{=}\ \sum_{k=-\infty}^{\infty} f[k]\, g[n - k] $

$ \begin{align} 0.5^nu[n] * u[n] &= \sum_{k=-\infty}^{\infty} 0.5^k u[k] u[n - k] \\ &= \sum_{k=0}^{\infty} 0.5^k u[n - k] \\ &= \sum_{k=0}^{n} 0.5^k u[n] \\ &= u[n] \sum_{k=0}^{n} 0.5^k \\ &= u[n] \frac{1-0.5^{n+1}}{1-0.5} \\ &= 2(1-0.5^{n+1})u[n] \end{align} $

For the next part of the expression convolve with a delta function. Recall, that convolving a function with a shifted delta results in a shifted version of the function,

$ \begin{align} 2(0.5^{n-1}u[n-1]) * u[n] &= 2(0.5^nu[n] * \delta[n-1]) * u[n] \\ &= 2(0.5^nu[n] * u[n]) * \delta[n-1] \\ &= 2(2(1-0.5^{n+1})u[n]) * \delta[n-1] \\ &= 4(1-0.5^{n})u[n-1] \\ \end{align} $

Combining the two,

$ \begin{align} y[n] &= 2(1-0.5^{n+1})u[n] + 4(1-0.5^{n})u[n-1] \end{align} $

c. Compute the output when x[n] = $ 0.25^n $u[n].

$ \begin{align} y[n] &= h[n] * x[n] \\ y[n] &= h[n] * u[n] \\ y[n] &= 0.5^nu[n] + 2(0.5)^{n-1}u[n-1] * 0.25^nu[n] \\ y[n] &= (0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * 0.25^nu[n]) \\ \end{align} $

Splitting the expression into two parts, we evaluate them individually,
Using the definition of convolution,
$ (f * g)[n]\ \stackrel{\mathrm{def}}{=}\ \sum_{k=-\infty}^{\infty} f[k]\, g[n - k] $

$ \begin{align} 0.5^nu[n] * 0.25^nu[n] &= \sum_{k=-\infty}^{\infty} 0.5^k u[k] 0.25^{n-k}u[n - k] \\ &= \sum_{k=0}^{\infty} \left ( \frac{0.5}{0.25} \right )^k 0.25^nu[n - k] \\ &= \sum_{k=0}^{n} 2^k 0.25^nu[n] \\ &= 0.25^nu[n] \sum_{k=0}^{n} 2^k \\ &= 0.25^nu[n] \frac{1-2^{n+1}}{1-2} \\ &= 0.25^n(2^{n+1} - 1)u[n] \\ \end{align} $

For the next part of the expression convolve with a delta function. Recall, that convolving a function with a shifted delta results in a shifted version of the function,

$ \begin{align} 2(0.5^{n-1}u[n-1]) * 0.25^nu[n] &= 2(0.5^nu[n] * \delta[n-1]) * 0.25^nu[n] \\ &= 2(0.5^nu[n] * 0.25^nu[n]) * \delta[n-1] \\ &= 2(0.25^n(2^{n+1} - 1)u[n]) * \delta[n-1] \\ &= 2(0.25^{n-1}(2^{n} - 1))u[n-1] \\ \end{align} $

Combining the two,

$ \begin{align} y[n] &= 0.25^n(2^{n+1} - 1)u[n] + 2(0.25^{n-1}(2^{n} - 1))u[n-1] \end{align} $

Credit: Prof. Bouman


Back to Lab Week 9 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett