Line 19: Line 19:
  
 
<math> X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)}</math> <span style="color:green"> This gives you a very complicated answer. -pm </span>
 
<math> X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)}</math> <span style="color:green"> This gives you a very complicated answer. -pm </span>
 +
 +
<math> X [0] = 1+ e^{-j(\frac{2}{3}\pi)(1+0)} +e^{-j\frac{4}{3}\pi(1+0)}</math>
 +
 +
<math> X [0] = 1+ e^{-j(\frac{2}{3}\pi)} +e^{-j\frac{4}{3}\pi)}</math>
 +
 +
<math> X [1] = 1+ e^{-j(\frac{2}{3}\pi)(1+1)} +e^{-j\frac{4}{3}\pi(1+1)}</math>
 +
 +
<math> X [1] = 1+ e^{-j(\frac{4}{3}\pi)} +e^{-j\frac{8}{3}\pi}</math>
 +
 +
<math> X [2] = 1+ e^{-j(\frac{2}{3}\pi)(1+2)} +e^{-j\frac{4}{3}\pi(1+2)}</math>
 +
 +
<math> X [2] = 1+ e^{-j(2\pi)} +e^{-j(4\pi)}</math>
 +
 +
<math> X [2] = 1+ 1 + 1 = 3</math>
 +
  
 
- AJFunche <span style="color:green"> Nice effort! -pm----
 
- AJFunche <span style="color:green"> Nice effort! -pm----

Revision as of 04:32, 20 October 2010

Practice Question 1, ECE438 Fall 2010, Prof. Boutin

On Computing the DFT of a discrete-time periodic signal


Compute the discrete Fourier transform of the discrete-time signal

$ x[n]= e^{-j \frac{2}{3} \pi n} $.

How does your answer related to the Fourier series coefficients of x[n]?


Post Your answer/questions below.

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N} $

$ N=3 $ That's correct! -pm

$ x[n]= e^{-j \frac{2}{3} \pi n} $

$ X [k] = \sum_{k=0}^{2}e^{-j(n)(\frac{2}{3}\pi)(1+k)} $ You are using the long route, instead of the short route. -pm

$ X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)} $ This gives you a very complicated answer. -pm

$ X [0] = 1+ e^{-j(\frac{2}{3}\pi)(1+0)} +e^{-j\frac{4}{3}\pi(1+0)} $

$ X [0] = 1+ e^{-j(\frac{2}{3}\pi)} +e^{-j\frac{4}{3}\pi)} $

$ X [1] = 1+ e^{-j(\frac{2}{3}\pi)(1+1)} +e^{-j\frac{4}{3}\pi(1+1)} $

$ X [1] = 1+ e^{-j(\frac{4}{3}\pi)} +e^{-j\frac{8}{3}\pi} $

$ X [2] = 1+ e^{-j(\frac{2}{3}\pi)(1+2)} +e^{-j\frac{4}{3}\pi(1+2)} $

$ X [2] = 1+ e^{-j(2\pi)} +e^{-j(4\pi)} $

$ X [2] = 1+ 1 + 1 = 3 $


- AJFunche Nice effort! -pm----


$ x[n] = \frac{1}{N}\sum_{k=0}^{N-1} X[k]e^{j2\pi k\frac{n}{N}} $

$ x[n] = \frac{1}{3}\sum_{k=0}^{2} X[k]e^{j\frac{2\pi}{3}kn} $

$ x[n] = \frac{1}{3} \cdot (X[0] + X[1]e^{j(\frac{2\pi}{3}(1)n )} + X[2]e^{j(\frac{2\pi}{3}(2)n)}) $

Notice that all the powers of e in this expression are positive, but the signal x[n] is expressed as a negative power of e, so you cannot compare just yet. -pm

whoops, I was doing the homework. is that correct? - ksoong

Tecnically yes, but not realy useful for computing the DFT. Instead, use the fact that $ e^{ 2 \pi n j}=1 $ to rewrite x[n] as a positive power of e. (Just add $ 2 \pi n j $ to the exponent of e). -pm

$ \begin{align} x[n]&= e^{-j \frac{2}{3} \pi n} \\ &= e^{-j \frac{2}{3} \pi n} e^{j 2 \pi n} \text{ (since this is the same as multiplying by one, for any integer n)}\\ &= e^{-j \frac{2}{3} \pi n +j 2 \pi n } \\ & = e^{j \frac{4}{3} \pi n} \\ & = e^{j 2 \frac{2\pi n }{3} } \end{align} $

Now compare with the inverse DFT formula.

$ e^{j 2 \frac{2\pi n }{3} } \ \ compare \ with \ \ \frac{1}{3} \cdot (X[0] + X[1]e^{j(\frac{2\pi}{3}n)} + X[2]e^{j(\frac{2\pi}{3}(2)n)}) $

X[0] = 0

X[1] = 0

X[2] = 3


  • Answer/question
  • Answer/question

Next practice problem


Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett