Line 16: | Line 16: | ||
<math>x[n] = \sum_{n=3}^{\infty} 4^n z^{-n} - \sum_{n=-\infty}^{4} 4^n z^{-n}</math> | <math>x[n] = \sum_{n=3}^{\infty} 4^n z^{-n} - \sum_{n=-\infty}^{4} 4^n z^{-n}</math> | ||
− | <math>x[n] = \sum_{n=0}^{\infty} (\frac{4}{z})^n - 85 - \sum_{n=4}^{\infty} 4 | + | <math>x[n] = \sum_{n=0}^{\infty} (\frac{4}{z})^n - 85 - \sum_{n=4}^{\infty} (\frac{4}{z})^n</math> |
this is the mistake I made on my exam - could you please clarify my work, professor? | this is the mistake I made on my exam - could you please clarify my work, professor? |
Revision as of 02:57, 19 October 2010
Practice Question 2, ECE438 Fall 2010, Prof. Boutin
On Computing the z-tramsfprm of a discrete-time signal.
Compute the z-transform of the discrete-time signal
$ x[n]= 4^n \left(u[n+3]-u[n-4] \right) $.
Note: there are two tricky parts in this problem. Do you know what they are?
Post Your answer/questions below.
$ x[n] = 4^n u[n+3] - 4^n u[n-4] $
$ x[n] = \sum_{n=-\infty}^{\infty} 4^n u[n+3] z^{-n} - \sum_{n=-\infty}^{\infty} 4^n u[n-4] z^{-n} $
$ x[n] = \sum_{n=3}^{\infty} 4^n z^{-n} - \sum_{n=-\infty}^{4} 4^n z^{-n} $
$ x[n] = \sum_{n=0}^{\infty} (\frac{4}{z})^n - 85 - \sum_{n=4}^{\infty} (\frac{4}{z})^n $
this is the mistake I made on my exam - could you please clarify my work, professor?
- Answer/question
- Answer/question
- Answer/question