Line 1: Line 1:
 
== Week7 Quiz Pool ==
 
== Week7 Quiz Pool ==
  
Q1:
+
Q1: As part of the first stage in a radix 2 FFT, a sequence x[n] of length N = 8 is decomposed
 +
into two sequences of length 4 as
 +
 
 +
<math>f_0[n] = x[2n]\text{ , n = 0, 1, 2, 3}</math>
 +
 
 +
<math>f_1[n] = x[2n + 1]\text{ , n = 0, 1, 2, 3}</math>
 +
 
 +
The 4-pt. DFT of each of these two sequences is <math>F_0[k]\text{ and }F_1[k]</math> respectively.
 +
 
 +
The specific values of <math>F_0[k]\text{ and }F_1[k]</math>, k = 0, 1, 2, 3, obtained from the length N = 8 sequence
 +
in question are listed in the Table below.
 +
 
 +
 
 +
 
 +
 
 +
From the values of <math>F_0[k] \text{ and }F_1[k]</math>, k = 0, 1, 2, 3, and the values of
 +
 
 +
<math>W_8^k = e^{\frac{-j2\pi k}{8}}, k = 0, 1, 2, 3</math>
 +
 
 +
provided in the Table, determine the numerical values of the actual N = 8-pt. DFT of x[n] denoted <math>X_8[k]</math> for k = 0, 1, 2, 3, 4, 5, 6, 7.
 +
 
 +
 
  
  

Revision as of 14:45, 3 October 2010

Week7 Quiz Pool

Q1: As part of the first stage in a radix 2 FFT, a sequence x[n] of length N = 8 is decomposed into two sequences of length 4 as

$ f_0[n] = x[2n]\text{ , n = 0, 1, 2, 3} $

$ f_1[n] = x[2n + 1]\text{ , n = 0, 1, 2, 3} $

The 4-pt. DFT of each of these two sequences is $ F_0[k]\text{ and }F_1[k] $ respectively.

The specific values of $ F_0[k]\text{ and }F_1[k] $, k = 0, 1, 2, 3, obtained from the length N = 8 sequence in question are listed in the Table below.



From the values of $ F_0[k] \text{ and }F_1[k] $, k = 0, 1, 2, 3, and the values of

$ W_8^k = e^{\frac{-j2\pi k}{8}}, k = 0, 1, 2, 3 $

provided in the Table, determine the numerical values of the actual N = 8-pt. DFT of x[n] denoted $ X_8[k] $ for k = 0, 1, 2, 3, 4, 5, 6, 7.



Solution


Q2:


Solution


Q3:


Solution


Q4:


Solution


Q5:


Solution


Q6:


Solution


Back to Lab wiki

Alumni Liaison

EISL lab graduate

Mu Qiao