Line 25: Line 25:
  
 
Does anyone know what the trick is for doing 1A and 1c? I know there is a trick because doing integration by parts is just too damn long.
 
Does anyone know what the trick is for doing 1A and 1c? I know there is a trick because doing integration by parts is just too damn long.
 +
 +
Yes, there is a function that breaks down the system. "sin(x)cos(y)=(sin(x+y)+sin(x-y))/2". You can then simply take the system as 2 separate sin functions.
  
 
----
 
----
  
 
[[2010_Fall_ECE_438_Boutin|Back to ECE438 Fall 2010 Prof. Boutin]]
 
[[2010_Fall_ECE_438_Boutin|Back to ECE438 Fall 2010 Prof. Boutin]]

Revision as of 15:57, 30 September 2010

Discussion related to midterm 1

Ask your questions here!

Possible formula sheet for exam 1 Add things or suggest items? Side note: the formula sheet on the practice exam seems to be suitable. Will we see something similar?


Midterm 1 Spring 2009 Question 3

a) $ H(w) = \frac{1}{3}[1 + e^{-jw} + e^{-j2w}] $

b) $ G(w) = rect(w\frac{3}{\pi}) $

$ A(w) = \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{w-2\pi k}{6}) $

$ B(w) = A(w)H(w) = \frac{1}{3}[1 + e^{-jw} + e^{-j2w}] \cdot \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{w-2\pi k}{6}) $

$ C(w) = B(6w) = \frac{1}{3}[1 + e^{-j(6w)} + e^{-j2(6w)}] \cdot \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{6w-2\pi k}{6}) $

$ F(w) = C(w)G(w) = \frac{1}{3}[1 + e^{-j(6w)} + e^{-j2(6w)}] \cdot\frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{6w-2\pi k}{6}) \cdot rect(w\frac{3}{\pi}) $

Is this correct?


Does anyone know what the trick is for doing 1A and 1c? I know there is a trick because doing integration by parts is just too damn long.

Yes, there is a function that breaks down the system. "sin(x)cos(y)=(sin(x+y)+sin(x-y))/2". You can then simply take the system as 2 separate sin functions.


Back to ECE438 Fall 2010 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang