(New page: Category:2010 Fall ECE 438 Boutin == Solution to Q4 of Week 5 Quiz Pool == ---- From the first question, we knew that <math> -a^{n}u[-n-1] = \mathcal{Z}^{-1}\bigg\{\frac{1}{1-az^{-...)
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
[[Category:2010 Fall ECE 438 Boutin]]
 
[[Category:2010 Fall ECE 438 Boutin]]
 
+
----
 
== Solution to Q4 of Week 5 Quiz Pool ==
 
== Solution to Q4 of Week 5 Quiz Pool ==
 
----
 
----
  
From the first question, we knew that  
+
From the definition, we know that
 +
 
 +
<math> H(e^{jw}) = \frac{e^{jw}-j}{e^{jw}-2} \,\!</math>
 +
 
 +
<math> \text{For } w_1, \; |H(e^{j w_1})| = \bigg|\frac{e^{j\frac{\pi}{2}}-j}{e^{j\frac{\pi}{2}}-2}\bigg| = 0, \;\; \text{ since } e^{j\frac{\pi}{2}}=j. \,\!</math>
  
<math> -a^{n}u[-n-1] = \mathcal{Z}^{-1}\bigg\{\frac{1}{1-az^{-1}}\bigg\} \text{ where } |z|<|a|. \,\!</math>
+
<math> \text{For } w_2, \; \text{ since } e^{-j\frac{\pi}{2}}=-j, \; H(e^{j w_2}) = \frac{e^{-j\frac{\pi}{2}}-j}{e^{-j\frac{\pi}{2}}-2} = \frac{-j-j}{-j-2} = \frac{2j}{2+j}. \,\!</math>
  
And the time-shifting property of Z-transform is defined as
+
Therefore,
  
<math> x[n-k] = \mathcal{Z}^{-1}\bigg\{z^{-k}X(z)\bigg\} \text{   when  } x[n] = \mathcal{Z}^{-1}\bigg\{X(z)\bigg\}\,\!</math>
+
<math> |H(e^{j w_2})| = \bigg|\frac{2j}{2+j}\bigg| = \frac{\sqrt{0^2+2^2}}{\sqrt{2^2+1^2}} = \frac{2}{\sqrt{5}}. \,\!</math>
  
Therefore, if we use the time-shifting property of Z-transform, then
 
  
<math> -a^{n-3}u[-(n-3)-1] = \mathcal{Z}^{-1}\bigg\{\frac{z^{-3}}{1-az^{-1}}\bigg\} \text{ where } |z|<|a|. \,\!</math>
 
  
Combined with the result from the linearity of Z-transform, then
 
  
<math>
 
\begin{align}
 
\mathcal{Z}^{-1}\bigg\{\frac{2z^{-3}}{1-az^{-1}}\bigg\}  \text{ for } |z|<|a| &= -2a^{n-3}u[-(n-3)-1], \\
 
&= -2a^{n-3}u[-n+2]
 
\end{align}
 
\,\!</math>
 
 
----
 
----
 
Back to [[ECE438_Week5_Quiz|Lab Week 5 Quiz Pool]]
 
Back to [[ECE438_Week5_Quiz|Lab Week 5 Quiz Pool]]

Latest revision as of 15:42, 19 September 2010


Solution to Q4 of Week 5 Quiz Pool


From the definition, we know that

$ H(e^{jw}) = \frac{e^{jw}-j}{e^{jw}-2} \,\! $

$ \text{For } w_1, \; |H(e^{j w_1})| = \bigg|\frac{e^{j\frac{\pi}{2}}-j}{e^{j\frac{\pi}{2}}-2}\bigg| = 0, \;\; \text{ since } e^{j\frac{\pi}{2}}=j. \,\! $

$ \text{For } w_2, \; \text{ since } e^{-j\frac{\pi}{2}}=-j, \; H(e^{j w_2}) = \frac{e^{-j\frac{\pi}{2}}-j}{e^{-j\frac{\pi}{2}}-2} = \frac{-j-j}{-j-2} = \frac{2j}{2+j}. \,\! $

Therefore,

$ |H(e^{j w_2})| = \bigg|\frac{2j}{2+j}\bigg| = \frac{\sqrt{0^2+2^2}}{\sqrt{2^2+1^2}} = \frac{2}{\sqrt{5}}. \,\! $




Back to Lab Week 5 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal