Line 15: Line 15:
 
   
 
   
 
I am not sure on the 48/100Y1 portion of equation 1.   
 
I am not sure on the 48/100Y1 portion of equation 1.   
 +
 +
Reply --[[User:Maloner|Maloner]] 21:12, 18 September 2010 (UTC) I dont think you are correct.  I think everything should have 400 in the denominator, except for maybe the 48gpm pure water inlet.  I am not sure what to do with that inlet stream?
 +
  
 
Need help with P356 #29 and 30.  
 
Need help with P356 #29 and 30.  

Revision as of 16:12, 18 September 2010

Homework 4 work area

Collaborate on HWK 4 here.

Section 8.4 #29 Does anybody have any thoughts about the solution to the second part of number 29 and the proof for #30? For the positive definite case and negative definite case, finding the determinate seems sufficient. I'm not sure how to show the indefinite case.

(rekblad 9/18) for #29 part 2 showing Q is indefinite, isn't it enough to just find two vectors that show Q > 0 and Q < 0 and also show that Q!=0 for x!=0 ? (Actually, on second thought, I think Q indefinite => Q may = 0 for some x!=0)

Problem 18 on page 146 Do I have the time rate of change equations correct:

Y1' = 48/100Y1 + 16/400Y2 - 64/100Y1 Y2' = 64/100Y1 - 64/100Y2

I am not sure on the 48/100Y1 portion of equation 1.

Reply --Maloner 21:12, 18 September 2010 (UTC) I dont think you are correct. I think everything should have 400 in the denominator, except for maybe the 48gpm pure water inlet. I am not sure what to do with that inlet stream?


Need help with P356 #29 and 30. This is my understanding of #29-> Positive definiteness of Prob23: [x1 x2]^T * [4 Sqrt(3), Sqrt(3) 2] * [x1 x2] >0 for all X(vector) not equal to 0(vector). So, 4 > 0, and the det([4 Sqrt(3), Sqrt(3) 2]) >0. Therefore, it is positive definite. And for Prob19: [x1 x2]^T * [1 12, 12 -6] * [x1 x2], 1 > 0 and det ([1 12, 12 -6]) < 0. Therefore, it it indefinite.

I am also having difficulty with P356 #29 & 30. I have found the Eigen values and Eigen vectors, placed the Eigenvectors into matrix, and solved teh diagonal matrix. I don't know where to go from here??? Any help??

Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva