Line 1: Line 1:
Pick a note frequency <math>f_0=392Hz</math>
+
*<span style="color:green"> You are welcome to add comments and questions here!</span> -[[User:zhao148|Zhao]]
 +
 
 +
Pick a note frequency <span class="texhtml">''f''<sub>0</sub> = 392''H''''z''</span>  
  
 
{|
 
{|
 
|-
 
|-
| <math>x(t)=cos(2\pi f_0t)=cos(2\pi *392t)</math>
+
| <span class="texhtml">''x''(''t'') = ''c''''o''''s''(2π''f''<sub>0</sub>''t'') = ''c''''o''''s''(* 392''t'')</span>
 
|-
 
|-
 
| <math>a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000}</math>
 
| <math>a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000}</math>
 
|-
 
|-
| <math>2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs.</math>  
+
| <math>2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs.</math>
|-
+
 
|}
 
|}
 
<div align="left" style="padding-left: 0em;">
 
<div align="left" style="padding-left: 0em;">
Line 15: Line 16:
 
x_1(n) &=x(nT_1)=cos(2\pi *392nT_1)=cos(2\pi *\frac{392}{1000}n) \\
 
x_1(n) &=x(nT_1)=cos(2\pi *392nT_1)=cos(2\pi *\frac{392}{1000}n) \\
 
&=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{1000}n} + e^{j2\pi *\frac{392}{1000}n} \right) \\
 
&=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{1000}n} + e^{j2\pi *\frac{392}{1000}n} \right) \\
\end{align}
+
\end{align}</math>  
</math>
+
</div>  
</div>
+
 
{|
 
{|
| <math>0<2\pi *\frac{392}{1000}<\pi</math>  
+
|-
 +
| <math>0<2\pi *\frac{392}{1000}<\pi</math>
 
|-
 
|-
 
| <math>-\pi<-2\pi *\frac{392}{1000}<0</math>
 
| <math>-\pi<-2\pi *\frac{392}{1000}<0</math>
Line 28: Line 29:
 
\mathcal{X}_1(\omega) &=2\pi *\frac{1}{2} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\
 
\mathcal{X}_1(\omega) &=2\pi *\frac{1}{2} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\
 
&=\pi \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\
 
&=\pi \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\
\end{align}
+
\end{align}</math>  
</math>
+
</div>  
</div>
+
[[Image:Xw1 singleperiod.jpg]]  
[[Image:Xw1_singleperiod.jpg]]
+
 
 
{|
 
{|
 
|-
 
|-
Line 38: Line 39:
 
| <math>\mathcal{X}_1(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right]</math>
 
| <math>\mathcal{X}_1(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right]</math>
 
|}
 
|}
[[Image:Xw1_multiperiod.jpg]]
+
 
 +
[[Image:Xw1 multiperiod.jpg]]  
 +
 
 
{|
 
{|
|In this situation, no aliasing occurs. In the interval of <math>[-\pi ,\pi ]</math>, which represents one period, the frequcy spectrum remains the same as Fig a-1.
+
|-
 +
| In this situation, no aliasing occurs. In the interval of <span class="texhtml">[ − π,π]</span>, which represents one period, the frequcy spectrum remains the same as Fig a-1.
 
|}
 
|}
 +
 
{|
 
{|
 
|-
 
|-
 
| <math>b.\ Assign\ sampling\ period\ T_2=\frac{1}{500}</math>
 
| <math>b.\ Assign\ sampling\ period\ T_2=\frac{1}{500}</math>
 
|-
 
|-
| <math>2f_0>\frac{1}{T_2}, \ Aliasing\ occurs.</math>  
+
| <math>2f_0>\frac{1}{T_2}, \ Aliasing\ occurs.</math>
|-
+
 
|}
 
|}
 
<div align="left" style="padding-left: 0em;">
 
<div align="left" style="padding-left: 0em;">
Line 54: Line 58:
 
x_2(n) &=x(nT_2)=cos(2\pi *392nT_2)=cos(2\pi *\frac{392}{500}n) \\
 
x_2(n) &=x(nT_2)=cos(2\pi *392nT_2)=cos(2\pi *\frac{392}{500}n) \\
 
&=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{500}n} + e^{j2\pi *\frac{392}{500}n} \right) \\
 
&=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{500}n} + e^{j2\pi *\frac{392}{500}n} \right) \\
\end{align}
+
\end{align}</math>  
</math>
+
</div>  
</div>
+
 
{|
 
{|
| <math>\pi<2\pi *\frac{392}{500}<2\pi</math>  
+
|-
 +
| <math>\pi<2\pi *\frac{392}{500}<2\pi</math>
 
|-
 
|-
 
| <math>-2\pi<-2\pi *\frac{392}{500}<\pi</math>
 
| <math>-2\pi<-2\pi *\frac{392}{500}<\pi</math>
Line 66: Line 70:
 
| <math>X_2(f)=\frac{1}{2}\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right]</math>
 
| <math>X_2(f)=\frac{1}{2}\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right]</math>
 
|}
 
|}
[[Image:Xw2_singleperiod.jpg]]
+
 
 +
[[Image:Xw2 singleperiod.jpg]]  
 +
 
 
{|
 
{|
 +
|-
 
| <math>for\ all\ \omega</math>
 
| <math>for\ all\ \omega</math>
 
|-
 
|-
Line 74: Line 81:
 
| <math>X_2(f)=\frac{1}{2}rep_2\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right]</math>
 
| <math>X_2(f)=\frac{1}{2}rep_2\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right]</math>
 
|}
 
|}
[[Image:Xw2_multiperiod.jpg]]
+
 
 +
[[Image:Xw2 multiperiod.jpg]]  
 +
 
 
{|
 
{|
|In this situation, aliasing DO occurs. In the interval of <math>[-\pi ,\pi ]</math>, which represents one period, the frequcy spectrum is different from Fig b-1.
+
|-
 +
| In this situation, aliasing DO occurs. In the interval of <span class="texhtml">[ − π,π]</span>, which represents one period, the frequcy spectrum is different from Fig b-1.
 
|}
 
|}
[[Image:Xf2_multiperiod.jpg]]
+
 
 +
[[Image:Xf2 multiperiod.jpg]]

Revision as of 11:24, 15 September 2010

  • You are welcome to add comments and questions here! -Zhao

Pick a note frequency f0 = 392H'z

x(t) = c'o's(2πf0t) = c'o's(2π * 392t)
$ a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000} $
$ 2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs. $

$ \begin{align} x_1(n) &=x(nT_1)=cos(2\pi *392nT_1)=cos(2\pi *\frac{392}{1000}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{1000}n} + e^{j2\pi *\frac{392}{1000}n} \right) \\ \end{align} $

$ 0<2\pi *\frac{392}{1000}<\pi $
$ -\pi<-2\pi *\frac{392}{1000}<0 $

$ \begin{align} \mathcal{X}_1(\omega) &=2\pi *\frac{1}{2} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ &=\pi \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ \end{align} $

Xw1 singleperiod.jpg

$ for\ all\ \omega $
$ \mathcal{X}_1(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] $

Xw1 multiperiod.jpg

In this situation, no aliasing occurs. In the interval of [ − π,π], which represents one period, the frequcy spectrum remains the same as Fig a-1.
$ b.\ Assign\ sampling\ period\ T_2=\frac{1}{500} $
$ 2f_0>\frac{1}{T_2}, \ Aliasing\ occurs. $

$ \begin{align} x_2(n) &=x(nT_2)=cos(2\pi *392nT_2)=cos(2\pi *\frac{392}{500}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{500}n} + e^{j2\pi *\frac{392}{500}n} \right) \\ \end{align} $

$ \pi<2\pi *\frac{392}{500}<2\pi $
$ -2\pi<-2\pi *\frac{392}{500}<\pi $
$ \mathcal{X}_2(\omega)=\pi \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] $
$ X_2(f)=\frac{1}{2}\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

Xw2 singleperiod.jpg

$ for\ all\ \omega $
$ \mathcal{X}_2(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] $
$ X_2(f)=\frac{1}{2}rep_2\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

Xw2 multiperiod.jpg

In this situation, aliasing DO occurs. In the interval of [ − π,π], which represents one period, the frequcy spectrum is different from Fig b-1.

Xf2 multiperiod.jpg

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010