(New page: {| | align="left" style="padding-left: 0em;" | CTFT of a periodic function |- | <math> X(f)=\mathcal{X}(2\pi f)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})=\sum^{\infty}_{k=-\inf...) |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | =How to obtain the CTFT of a periodic function in terms of f in hertz (from the formula in terms of <math>\omega</math>) = | |
− | + | ||
− | + | Recall: | |
− | + | ||
− | + | <math>x(t)=\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t}</math> | |
− | + | ||
− | | | + | <math>\mathcal{X}(\omega)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})</math> |
+ | |||
+ | To obtain X(f), use the substitution | ||
+ | |||
+ | <math>\omega= 2 \pi f </math>. | ||
+ | |||
+ | More specifically | ||
+ | |||
+ | <math> | ||
+ | \begin{align} | ||
+ | X(f) &=\mathcal{X}(2\pi f) \\ | ||
+ | &=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(2\pi f-kw_{0}) \\ | ||
+ | &=\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | <math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math> | ||
+ | |||
+ | ---- | ||
+ | [[ECE438_HW1_Solution|Back to Table]] |
Latest revision as of 11:03, 15 September 2010
How to obtain the CTFT of a periodic function in terms of f in hertz (from the formula in terms of $ \omega $)
Recall:
$ x(t)=\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $
$ \mathcal{X}(\omega)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) $
To obtain X(f), use the substitution
$ \omega= 2 \pi f $.
More specifically
$ \begin{align} X(f) &=\mathcal{X}(2\pi f) \\ &=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(2\pi f-kw_{0}) \\ &=\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) \end{align} $
$ Since\ k\delta (kt)=\delta (t),\forall k\ne 0 $