(New page: {| | align="left" style="padding-left: 0em;" | CTFT of a periodic function |- | <math> X(f)=\mathcal{X}(2\pi f)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})=\sum^{\infty}_{k=-\inf...)
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{|
+
=How to obtain the CTFT of a periodic function in terms of f in hertz (from the formula in terms of <math>\omega</math>) =
| align="left" style="padding-left: 0em;" | CTFT of a periodic function
+
 
|-  
+
Recall:
| <math> X(f)=\mathcal{X}(2\pi f)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})=\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi})</math>  
+
 
|-
+
<math>x(t)=\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t}</math>
| <math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math>
+
 
|}
+
<math>\mathcal{X}(\omega)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})</math>
 +
 
 +
To obtain X(f), use the substitution
 +
 
 +
<math>\omega= 2 \pi f </math>.
 +
 
 +
More specifically
 +
 
 +
<math>
 +
\begin{align}
 +
X(f) &=\mathcal{X}(2\pi f) \\
 +
&=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(2\pi f-kw_{0}) \\
 +
&=\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi})
 +
\end{align}
 +
</math>
 +
 
 +
<math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math>
 +
 
 +
----
 +
[[ECE438_HW1_Solution|Back to Table]]

Latest revision as of 11:03, 15 September 2010

How to obtain the CTFT of a periodic function in terms of f in hertz (from the formula in terms of $ \omega $)

Recall:

$ x(t)=\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $

$ \mathcal{X}(\omega)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) $

To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ \begin{align} X(f) &=\mathcal{X}(2\pi f) \\ &=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(2\pi f-kw_{0}) \\ &=\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) \end{align} $

$ Since\ k\delta (kt)=\delta (t),\forall k\ne 0 $


Back to Table

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang