(New page: {| | align="left" style="padding-left: 0em;" | CTFT of a rect |- | <math> X(f)=\mathcal{X}(2\pi f)=\frac{\sin \left(2\pi Tf \right)}{\pi f} \ </math> |- |})
 
 
Line 1: Line 1:
{|
+
=How to obtain the CTFT of a rect in terms of f in hertz (from the formula in terms of <math>\omega</math>) =
| align="left" style="padding-left: 0em;" | CTFT of a rect  
+
 
|-
+
Recall:
| <math> X(f)=\mathcal{X}(2\pi f)=\frac{\sin \left(2\pi Tf \right)}{\pi f}  \ </math>  
+
 
|-
+
<math>x(t)=\left\{\begin{array}{ll}1, &  \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right.</math>
|}
+
 
 +
<math>\mathcal{X}(\omega)=\frac{2 \sin \left( T \omega \right)}{\omega}</math>
 +
 
 +
To obtain X(f), use the substitution
 +
 
 +
<math>\omega= 2 \pi f </math>.
 +
 
 +
More specifically
 +
 +
<math> X(f)=\mathcal{X}(2\pi f)=\frac{\sin \left(2\pi Tf \right)}{\pi f}  \ </math>  
 +
 
 +
----
 +
[[ECE438_HW1_Solution|Back to Table]]

Latest revision as of 10:57, 15 September 2010

How to obtain the CTFT of a rect in terms of f in hertz (from the formula in terms of $ \omega $)

Recall:

$ x(t)=\left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. $

$ \mathcal{X}(\omega)=\frac{2 \sin \left( T \omega \right)}{\omega} $

To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ X(f)=\mathcal{X}(2\pi f)=\frac{\sin \left(2\pi Tf \right)}{\pi f} \ $


Back to Table

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach