Line 1: Line 1:
{|
+
=How to obtain the CTFT of a shifted unit impulse in terms of f in hertz (from the formula in terms of <math>\omega</math>) =
|-
+
 
| align="left" style="padding-left: 0em;" | CTFT of a shifted unit impulse  
+
<math> x(t)=\delta (t-t_0) </math>
|-
+
 
| <math>X(f)=\mathcal{X}(2\pi f)=e^{-i2\pi ft_0} </math>  
+
<math> \mathcal{X}(\omega )=e^{-iwt_0}</math>
|-
+
 
|}
+
 
 +
To obtain X(f), use the substitution
 +
 
 +
<math>\omega= 2 \pi f </math>.
 +
 
 +
More specifically
 +
 
 +
<math>
 +
\begin{align}
 +
X(f)&=\mathcal{X}(2\pi f)=e^{-i2\pi ft_0}  
 +
\end{align}
 +
</math>  
 +
 +
----
 +
[[ECE438_HW1_Solution|Back to Table]]

Latest revision as of 10:08, 15 September 2010

How to obtain the CTFT of a shifted unit impulse in terms of f in hertz (from the formula in terms of $ \omega $)

$ x(t)=\delta (t-t_0) $

$ \mathcal{X}(\omega )=e^{-iwt_0} $


To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ \begin{align} X(f)&=\mathcal{X}(2\pi f)=e^{-i2\pi ft_0} \end{align} $


Back to Table

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn