Line 1: | Line 1: | ||
− | + | =How to obtain the CTFT of a shifted unit impulse in terms of f in hertz (from the formula in terms of <math>\omega</math>) = | |
− | + | ||
− | + | <math> x(t)=\delta (t-t_0) </math> | |
− | + | ||
− | + | <math> \mathcal{X}(\omega )=e^{-iwt_0}</math> | |
− | + | ||
− | | | + | |
+ | To obtain X(f), use the substitution | ||
+ | |||
+ | <math>\omega= 2 \pi f </math>. | ||
+ | |||
+ | More specifically | ||
+ | |||
+ | <math> | ||
+ | \begin{align} | ||
+ | X(f)&=\mathcal{X}(2\pi f)=e^{-i2\pi ft_0} | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | ---- | ||
+ | [[ECE438_HW1_Solution|Back to Table]] |
Latest revision as of 10:08, 15 September 2010
How to obtain the CTFT of a shifted unit impulse in terms of f in hertz (from the formula in terms of $ \omega $)
$ x(t)=\delta (t-t_0) $
$ \mathcal{X}(\omega )=e^{-iwt_0} $
To obtain X(f), use the substitution
$ \omega= 2 \pi f $.
More specifically
$ \begin{align} X(f)&=\mathcal{X}(2\pi f)=e^{-i2\pi ft_0} \end{align} $