Line 1: | Line 1: | ||
− | + | =How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of <math>\omega</math> = | |
− | + | ||
− | + | Recall: | |
− | + | <math> \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math> | |
− | + | ||
− | + | ||
− | | | + | To obtain X(f), use the substitution |
+ | |||
+ | <math>\omage= 2 \pi f </math>. More specifically | ||
+ | |||
+ | <math> | ||
+ | \begin{align} | ||
+ | X(f) &=\mathcal{X}(2\pi f)\\ | ||
+ | &=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | ---- | ||
+ | [[ECE438|Back to ECE438]] |
Revision as of 09:00, 15 September 2010
How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of $ \omega $
Recall: $ \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $
To obtain X(f), use the substitution
$ \omage= 2 \pi f $. More specifically
$ \begin{align} X(f) &=\mathcal{X}(2\pi f)\\ &=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt \end{align} $