(New page: Pick a note frequency <math>f_0=392Hz</math> {| |- | <math>x(t)=cos(2\pi f_0t)=cos(2\pi *392t)</math> |- | <math>when\ sample\ period\ T_1=\frac{1}{1000}</math> |- | <math>2f_0<\frac{1}{T...)
 
Line 22: Line 22:
 
|-
 
|-
 
| <math>-\pi<-2\pi *\frac{392}{1000}<0</math>
 
| <math>-\pi<-2\pi *\frac{392}{1000}<0</math>
 +
|}
 +
<div align="left" style="padding-left: 0em;">
 +
<math>
 +
\begin{align}
 +
\mathcal{X}_1(\omega) &=2\pi *\frac{1}{2} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\
 +
&=\pi \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\
 +
\end{align}
 +
</math>
 +
</div>
 +
 +
graph x1w
 +
 +
{|
 +
|-
 +
| <math>for\ all\ \omega</math>
 +
|-
 +
| <math>\mathcal{X}_1(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right]</math>
 +
|}
 +
 +
graph x1w_all
 +
 +
{|
 +
|-
 +
| <math>when\ sample\ period\ T_2=\frac{1}{500}</math>
 +
|-
 +
| <math>2f_0>\frac{1}{T_2}, \ Aliasing\ occurs.</math>
 +
|-
 +
|}
 +
<div align="left" style="padding-left: 0em;">
 +
<math>
 +
\begin{align}
 +
x_2(n) &=x(nT_2)=cos(2\pi *392nT_2)=cos(2\pi *\frac{392}{500}n) \\
 +
&=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{500}n} + e^{j2\pi *\frac{392}{500}n} \right) \\
 +
\end{align}
 +
</math>
 +
</div>
 +
{|
 +
| <math>\pi<2\pi *\frac{392}{500}<2\pi</math>
 +
|-
 +
| <math>-2\pi<-2\pi *\frac{392}{500}<\pi</math>
 
|}
 
|}

Revision as of 19:04, 10 September 2010

Pick a note frequency $ f_0=392Hz $

$ x(t)=cos(2\pi f_0t)=cos(2\pi *392t) $
$ when\ sample\ period\ T_1=\frac{1}{1000} $
$ 2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs. $

$ \begin{align} x_1(n) &=x(nT_1)=cos(2\pi *392nT_1)=cos(2\pi *\frac{392}{1000}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{1000}n} + e^{j2\pi *\frac{392}{1000}n} \right) \\ \end{align} $

$ 0<2\pi *\frac{392}{1000}<\pi $
$ -\pi<-2\pi *\frac{392}{1000}<0 $

$ \begin{align} \mathcal{X}_1(\omega) &=2\pi *\frac{1}{2} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ &=\pi \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ \end{align} $

graph x1w

$ for\ all\ \omega $
$ \mathcal{X}_1(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] $

graph x1w_all

$ when\ sample\ period\ T_2=\frac{1}{500} $
$ 2f_0>\frac{1}{T_2}, \ Aliasing\ occurs. $

$ \begin{align} x_2(n) &=x(nT_2)=cos(2\pi *392nT_2)=cos(2\pi *\frac{392}{500}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{500}n} + e^{j2\pi *\frac{392}{500}n} \right) \\ \end{align} $

$ \pi<2\pi *\frac{392}{500}<2\pi $
$ -2\pi<-2\pi *\frac{392}{500}<\pi $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett