(New page: {| |- | align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform | <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\mathcal{F}^{-1}(\mathcal{X}(2\pi f))=\frac{1}{2\pi}...)
 
Line 1: Line 1:
 
{|
 
{|
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform  
+
| align="left" style="padding-left: 0em;" | Inverse DT Fourier Transform  
 +
|-
 
| <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\mathcal{F}^{-1}(\mathcal{X}(2\pi f))=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{i2\pi ft} d2\pi f= \int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \,</math>
 
| <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\mathcal{F}^{-1}(\mathcal{X}(2\pi f))=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{i2\pi ft} d2\pi f= \int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \,</math>
 
|}
 
|}

Revision as of 19:48, 9 September 2010

Inverse DT Fourier Transform
$ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\mathcal{F}^{-1}(\mathcal{X}(2\pi f))=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{i2\pi ft} d2\pi f= \int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \, $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn