(New page: {| |- | align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform | <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\mathcal{F}^{-1}(\mathcal{X}(2\pi f))=\frac{1}{2\pi}...) |
|||
Line 1: | Line 1: | ||
{| | {| | ||
|- | |- | ||
− | | align=" | + | | align="left" style="padding-left: 0em;" | Inverse DT Fourier Transform |
+ | |- | ||
| <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\mathcal{F}^{-1}(\mathcal{X}(2\pi f))=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{i2\pi ft} d2\pi f= \int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \,</math> | | <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\mathcal{F}^{-1}(\mathcal{X}(2\pi f))=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{i2\pi ft} d2\pi f= \int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \,</math> | ||
|} | |} |
Revision as of 19:48, 9 September 2010
Inverse DT Fourier Transform |
$ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\mathcal{F}^{-1}(\mathcal{X}(2\pi f))=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{i2\pi ft} d2\pi f= \int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \, $ |