Line 11: Line 11:
 
|-
 
|-
 
| <math>b.\text{ } x(t)=e^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math>  
 
| <math>b.\text{ } x(t)=e^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math>  
|-  
+
|-
 
| <math>X(f)= \mathcal{X}(2\pi f)=\frac{1}{a+i2\pi f}</math>  
 
| <math>X(f)= \mathcal{X}(2\pi f)=\frac{1}{a+i2\pi f}</math>  
 
|-
 
|-

Revision as of 15:10, 9 September 2010

CTFT of a complex exponential
$ a.\text{ } x(t)=e^{i\omega_0 t} $
$ X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0) $
$ Since\text{ } k\delta (kt)=\delta (t),\forall k\ne 0 $
$ X(f)=\delta (f-\frac{\omega_0}{2\pi}) $
$ b.\text{ } x(t)=e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $
$ X(f)= \mathcal{X}(2\pi f)=\frac{1}{a+i2\pi f} $
$ c.\text{ } x(t)=te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $
$ X(f)= \mathcal{X}(2\pi f)=\left( \frac{1}{a+i2\pi f}\right)^2 $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal