Line 1: Line 1:
 
{|  
 
{|  
 
| align="left" style="padding-left: 0em;" | CTFT of a complex exponential
 
| align="left" style="padding-left: 0em;" | CTFT of a complex exponential
 +
|-
 +
|<math>x(t)=e^{i\omega_0 t}</math>
 
|-
 
|-
 
|<math>X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0)</math>
 
|<math>X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0)</math>

Revision as of 14:59, 9 September 2010

CTFT of a complex exponential
$ x(t)=e^{i\omega_0 t} $
$ X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0) $
$ Since\text{ } k\delta (kt)=\delta (t),\forall k\ne 0 $
$ X(f)=\delta (f-\frac{\omega_0}{2\pi}) $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin